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• This presentation may contain product features or functionality that are currently under development.

• This overview of new technology represents no commitment from VMware to deliver these features in 
any generally available product.

• Features are subject to change, and must not be included in contracts, purchase orders, or sales 
agreements of any kind.

• Technical feasibility and market demand will affect final delivery.

• Pricing and packaging for any new features/functionality/technology discussed or presented, have not 
been determined.

• The information in this presentation is for informational purposes only and may not be incorporated into 
any contract. There is no commitment or obligation to deliver any items presented herein. 
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Java and Jakarta



Baseline: JDK 17 LTS

● Language: text blocks, switch expressions, instanceof pattern matching

● Core libraries: collection factory methods, etc.

● Type system: records, sealed classes

● A great baseline for modern-day Java!



Coming up: JDK 21 LTS

● Language: pattern matching for switch, record patterns

● Core libraries: sequenced collections, etc.

● Runtime: virtual threads, generational ZGC

● Fully supported in Spring Framework 6.1 already



Baseline: Jakarta EE 9

● Servlet API 5.0: javax.servlet → jakarta.servlet

● JPA 3.0: javax.persistence → jakarta.persistence

● Bean Validation 3.0: javax.validation → jakarta.validation

● Same APIs as with Java EE 8, just in a different namespace



Current: Jakarta EE 10

● Servlet API 6.0: e.g. Tomcat 10.1, Jetty 12

● Servlet 6.0 in the build, Servlet 5.0 compatibility at runtime

● Servlet 6.0 for mocks in spring-test

● JPA 3.1: e.g. Hibernate ORM 6.2

● Bean Validation 3.0: e.g. Hibernate Validator 8.0

● Default EE API level in Spring Boot 3



Coming up: Jakarta EE 11

● JDK 21 as the official minimum requirement ⚠

● Servlet API 6.1 embracing virtual threads

● Tomcat 11 expected to require JDK 21 as well

● Optional Tomcat 11 upgrade in Spring Boot 3.3 ?



Odds and Ends



Module-path and Class-path Scanning Enhancements

● Module path scanning support for "classpath*:" resource prefix

● For example, with a patched module using Maven Surefire

● Class path scanning support in custom filesystems

● For example, the GraalVM native image filesystem



Declarative HTTP Clients



Interface-based HTTP Clients

● Annotate an interface – Spring translates it into actual HTTP client requests

● Analogous to OpenFeign/Feign but without the related issues
○ lack of non-blocking support, dependency on third parties, etc.

● Infrastructure and annotations live in Core Spring (spring-web)



HTTP Client Annotations and Proxies

● @HttpExchange, @PostExchange, @GetExchange, etc.
○ instead of @RequestMapping, @PostMapping, etc.

● Reuses several parameter-level annotations from Spring MVC
○ @RequestHeader, @PathVariable, @RequestBody, etc.

● HttpServiceProxyFactory: creates proxies for annotated client interfaces



Blocking

Example: @PostExchange - Blocking



Reactive

Example: @PostExchange - Reactive



status, headers, body

Example: @PostExchange - ResponseEntity



Creating an HTTP Service Proxy



Ahead-Of-Time



Spring AOT
• Reduces startup time and memory footprint in production
• Runtime hints for reflection, resources, serialization, proxies
• Optional for optimized JVM deployments
• Precondition for GraalVM native executables
• Core infrastructure in Spring Framework 6
• Build tools in Spring Boot 3
• Test within a native image with JUnit 5 and GraalVM Native Build Tools

AOT is a tradeoff: extra build setup and less flexibility at runtime
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GraalVM Native Image
• GraalVM is the de-facto standard for native executables

• Strong closed-world assumption, no runtime adaptations

• AOT-processed application as input → native executable

• Very long build time for actual native code generation

A different mode of deployment with strong benefits and limitations
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Project Leyden
• https://openjdk.org/projects/leyden/

• OpenJDK aims to introduce well-defined static images
• For example, custom HotSpot-based runtime images for specific applications

• Incremental approach: weaker constraints → more runtime flexibility
• Strict closed-world constraints as the final goal

Spring’s AOT strategy aligns with Leyden’s JVM strategy
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Virtual Threads



● Lightweight threading model within the JVM

● Designed as virtual variant of java.lang.Thread

● Better scalability for imperative programming

● Not blocking an operating system thread on I/O operations

Project Loom: Virtual Threads preview in JDK 19



JDK 21 takes Virtual Threads out of preview

● A regular JVM feature now, even part of an LTS release

● New builder API on java.lang.Thread

● New java.util.concurrent.ExecutorService variants

● Seamless interoperability with existing code

● Avoid synchronization around I/O operations!



Virtual Threads in Spring Framework 6.1

● New virtualThreads flag in SimpleAsyncTaskExecutor

● Dedicated VirtualThreadTaskExecutor variant

● A simple replacement for existing TaskExecutor setups

● Individually configurable for messaging, scheduling, etc.



Virtual Threads for Spring MVC applications

● Tomcat/Jetty executor setup for virtual threads

● Latest database drivers behind JDBC and JPA

● First-class setup option expected for Spring Boot 3.2

● Ideally no changes necessary in the application codebase



Spring WebFlux and Virtual Threads

● WebFlux: scalability through a reactive programming model

● Stream-based access with backpressure-enabled drivers

● Efficient CPU usage through non-blocking handling already

● Can run potentially blocking user tasks on virtual threads

● A reactive-centric web stack with blocking escape options



Spring MVC and Reactive Programming

● Spring MVC understands reactive return types as well (!)

● E.g. reactive datastore access for specific web endpoints

● Presence of Reactor necessary for reactive web endpoints

● That aside, Spring MVC is a lean stack on virtual threads

● A virtual-thread-powered web stack with reactive options 



Benefits of Virtual Threads

● Higher scalability for existing applications

● Or same scalability with a smaller footprint

● Strong benefits for JDBC/JPA interactions

● A good fit for HTTP interactions via RestTemplate

● Take your Spring web applications for a test run!



JVM Checkpoint Restore



Project CRaC: Coordinated Restore at Checkpoint

● https://github.com/CRaC/docs

● Bootstrapping from a warmed-up HotSpot JVM image

● Originally developed by Azul for OpenJDK on Linux

● Adopted by Amazon for AWS Lambda SnapStart

● A simple approach towards immediate JVM startup

https://github.com/CRaC/docs


Project CRaC: Requirements

● At checkpoint time, pause the application

● No open network connections

● No open file handles

● At restore time, re-establish connections / listeners



Project CRaC support in Spring Framework 6.1

● https://docs.spring.io/spring-framework/reference/6.1/integration/checkpoint-restore.html

● Custom checkpoints after application startup (+ warmup)

● ApplicationContext gets checkpoint/restore notifications

● Propagates stop/restart signals to participating beans

● org.springframework.context.Lifecycle interface

https://docs.spring.io/spring-framework/reference/6.1/integration/checkpoint-restore.html


Recommendations for Lifecycle implementations

● For example, Spring’s own JMS message listener containers

● Stop all asynchronous processing on Lifecycle.stop

● Keep state intact; stop is not equal to destroy call

● Remain able to restart async work on Lifecycle.start

● When destroy follows stop, shut down completely



Common Spring apps working out-of-the-box

● Standard lifecycle coordination through the framework

● Embedded Tomcat/Jetty to participate in stop/restart

● Spring Boot 3.2 can support common checkpoint choices

● Alternatively, custom checkpoints will be possible as well

● Ideally no changes necessary in the application codebase



Roadmap



● Spring Framework 6.1 M2 in mid July

● Spring Boot 3.2 M1 in mid July

● Release candidates in October 2023

● General availability in November 2023

● Give our milestones a try on JDK 21 EA builds!

Spring Framework 6.1 + Spring Boot 3.2
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