
@danielbryantuk | @ambassadorlabs

The Busy Platform Engineers
Guide to API Gateways
Daniel Bryant | Head of DevRel, Ambassador Labs Independent Consultant
@danielbryantuk

@danielbryantuk | @ambassadorlabs

tl;dr

● Choosing (or migrating) an API gateway is a Type 1 decision

● Traffic management is a key part of any platform

● Treat an API Gateway as a product

● Think about developer/operator experience

● Focus on workflows and tooling interoperability

@danielbryantuk | @ambassadorlabs

@danielbryantuk (he/him)

linktr.ee/danielbryantuk

https://linktr.ee/danielbryantuk

@danielbryantuk | @ambassadorlabs

Decisions, decisions, decisions…🤔

@danielbryantuk | @ambassadorlabs

Software engineering is all about decisions

"Some decisions are consequential and irreversible or nearly irreversible
– one-way doors – and these decisions must be made methodically,
carefully, slowly, with great deliberation and consultation.

If you walk through and don't like what you see on the other side, you
can't get back to where you were before. We can call these Type 1
decisions."

-Jeff Bezos, Founder of Amazon

@danielbryantuk | @ambassadorlabs

Software engineering is all about decisions

"But most decisions aren't like that – they are changeable, reversible –
they're two-way doors. If you've made a suboptimal Type 2 decision, you
don't have to live with the consequences for that long. You can reopen the
door and go back through.

Type 2 decisions can and should be made quickly by high judgment
individuals or small groups."

-Jeff Bezos, Founder of Amazon

@danielbryantuk | @ambassadorlabs

Choosing an API gateway is a type 1 decision

● An API gateway is difficult to change/replace
○ “Sticky” technology with a steep learning curve

● On the (business critical) hot path for all traffic
○ All user requests flow through this component

● Can be expensive
○ Contract lock-in is real, yo!

○ Platform engineers need to consider €€€ (especially now)

@danielbryantuk | @ambassadorlabs

Previously at KubeCon ‘22

@danielbryantuk | @ambassadorlabs

From Kubernetes to PaaS to… err, what’s next?

youtube.com/watch?v=btUYeOa7JPI

https://www.youtube.com/watch?v=btUYeOa7JPI

@danielbryantuk | @ambassadorlabs

A quick recap for building platforms

From Kubernetes to PaaS to… err, what’s next?

My answer is Golden Paths, a.k.a. paved roads/paths/platforms

The real questions are how much should you build yourself,

and how should you assemble the control plane for effective use?

Platform Engineering is a how you do this

@danielbryantuk | @ambassadorlabs

@danielbryantuk | @ambassadorlabs

@danielbryantuk | @ambassadorlabs

@danielbryantuk | @ambassadorlabs

A word of caution with platforms

twitter.com/tastapod/status/1671810856273707008

https://twitter.com/tastapod/status/1671810856273707008

@danielbryantuk | @ambassadorlabs

Building platforms: What did I learn?

Treat platform as a product 🚉🎛
You can’t have good DevX without good UX 󰠁✨
Focus on workflows and tooling interoperability 🏭🤝

@danielbryantuk | @ambassadorlabs

Treat Platform API Gateway as a Product 🚪

@danielbryantuk | @ambassadorlabs

API Gateway as a Product

● Beware of “product” vs “project”
○ API gateways need a long-term (product) owner

○ Staff and resource an API gateway appropriately

○ If you want build an API gateway, it has to be a product (but don’t do this!)

● Take care when lifting and shifting an API Gateway
○ Nearly always end up replatforming  (“lift-tinker-and-shift”)

@danielbryantuk | @ambassadorlabs

API Gateway as a Product

● Know your users!
○ API gateways have multiple users (personas)

○ Identify them and their requirements

○ Top down vs bottom up

○ User research is invaluable

twitter.com/danielbryantuk/status/1669446786354692097

https://twitter.com/danielbryantuk/status/1669446786354692097

@danielbryantuk | @ambassadorlabs

API Gateway as a Product

● Understand where the API gateway fits into the bigger solution

● The modern cloud native communication stack is complicated
○ The API gateway is only part of the solution

https://www.youtube.com/watch?v=Q09dAnIN4RY

https://www.youtube.com/watch?v=Q09dAnIN4RY

@danielbryantuk | @ambassadorlabs

Modern cloud native comms stack

CDN API Gateway Service Mesh CNI

OSI Layer 1-3
OSI Layer 4-7

Operations OperationsDevelopers

APIM

Internal Dev Portal (IDP)

WAF
Policy (Workloads)

NACL / SG

SDN

Policy (Users)

App ‘ilities (authn/z, rate limit, cache)

🤯
Traffic flow

@danielbryantuk | @ambassadorlabs

All-in-one or one-for-all?

● You can implement “all-in-one” solutions
○ Solo
○ Isovalent
○ Kong
○ Cloud vendors(?)

● Or choose best of breed for each component
○ Ambassador’s Emissary-ingress, Envoy Gateway
○ Buoyant’s Linkerd, HashiCorp’s Consul
○ Cloud vendor CNI
○ Cloudflare

@danielbryantuk | @ambassadorlabs

You can’t have good DevX
without good UX 󰠁✨

@danielbryantuk | @ambassadorlabs

You can’t have good DevX without good UX

● Understand the approach and defaults for your platform
○ Kubernetes native (CRDs, GitOps-friendly)
○ CLI or API-driven
○ UI-driven

● Tailor the experience to personas
○ Developer experience
○ Operator experience

● Platform engineering tenet: self-service
○ But this means many things to many people
○ PRs vs biz-focused clickops

https://twitter.com/danielbryantuk/status/1557268926429528065

https://twitter.com/danielbryantuk/status/1557268926429528065

@danielbryantuk | @ambassadorlabs

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: quote-mapping
spec:
 prefix: /quote/
 service: quote

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: quote2-mapping
spec:
 prefix: /quote/
 service: fancy-quote
 weight: 10

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: restricted-mapping
spec:
 host: restricted.example.com
 prefix: /restricted/
 rewrite: /a/very/safe/path/
 rewrite_host: safe.example.com
 service: dangerous-service

apiVersion: getambassador.io/v3alpha1
kind: Listener
metadata:
 name: listener-8443
spec:
 hostname: www.example.com
 tlsSecret:
 name: example-cert
 securityModel: XFP
 hostBinding:
 selector:
 matchLabels:
 my-listener: example

apiVersion: getambassador.io/v3alpha1
kind: Host
metadata:
 name: example-host
 labels:
 my-listener: example
spec:
 hostname: “www.example.com”
 tlsSecret:
 name: example-cert

apiVersion: getambassador.io/v3alpha1
kind: AuthService
metadata:
 name: extauth-service
spec:
 auth_service: example-auth
 path_prefix: “/extauth”
 allowed_request_headers:
 - “x-example-session”
 allowed_authorization_headers:
 - “x-example-session”
 - “x-example-userid”

Self-Service Configuration

@danielbryantuk | @ambassadorlabs

Focus on workflows and
tooling interoperability 🏭🤝

@danielbryantuk | @ambassadorlabs

Workflow and interop

netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249

srvaroa.github.io/paas/infrastructure/platform/kubernetes/cloud/2020/01/02/talk-how-to-build-a-paas-for-1500-engineers.html

“A good deal of the job is ultimately about finding the
right balances between standardization and autonomy”

“[The] centralized [platform] teams act as force multipliers by turning
their specialized knowledge into reusable building blocks.”

https://netflixtechblog.com/full-cycle-developers-at-netflix-a08c31f83249
https://srvaroa.github.io/paas/infrastructure/platform/kubernetes/cloud/2020/01/02/talk-how-to-build-a-paas-for-1500-engineers.html

@danielbryantuk | @ambassadorlabs

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: quote-mapping
spec:
 prefix: /quote/
 service: quote

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: quote2-mapping
spec:
 prefix: /quote/
 service: fancy-quote
 weight: 10

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: restricted-mapping
spec:
 host: restricted.example.com
 prefix: /restricted/
 rewrite: /a/very/safe/path/
 rewrite_host: safe.example.com
 service: dangerous-service

apiVersion: getambassador.io/v3alpha1
kind: Listener
metadata:
 name: listener-8443
spec:
 hostname: www.example.com
 tlsSecret:
 name: example-cert
 securityModel: XFP
 hostBinding:
 selector:
 matchLabels:
 my-listener: example

apiVersion: getambassador.io/v3alpha1
kind: Host
metadata:
 name: example-host
 labels:
 my-listener: example
spec:
 hostname: “www.example.com”
 tlsSecret:
 name: example-cert

apiVersion: getambassador.io/v3alpha1
kind: AuthService
metadata:
 name: extauth-service
spec:
 auth_service: example-auth
 path_prefix: “/extauth”
 allowed_request_headers:
 - “x-example-session”
 allowed_authorization_headers:
 - “x-example-session”
 - “x-example-userid”

Self-Service Configuration

@danielbryantuk | @ambassadorlabs

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: quote-mapping
spec:
 prefix: /quote/
 service: quote

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: quote2-mapping
spec:
 prefix: /quote/
 service: fancy-quote
 weight: 10

apiVersion: getambassador.io/v3alpha1
kind: Mapping
metadata:
 name: restricted-mapping
spec:
 host: restricted.example.com
 prefix: /restricted/
 rewrite: /a/very/safe/path/
 rewrite_host: safe.example.com
 service: dangerous-service

apiVersion: getambassador.io/v3alpha1
kind: Listener
metadata:
 name: listener-8443
spec:
 hostname: www.example.com
 tlsSecret:
 name: example-cert
 securityModel: XFP
 hostBinding:
 selector:
 matchLabels:
 my-listener: example

apiVersion: getambassador.io/v3alpha1
kind: Host
metadata:
 name: example-host
 labels:
 my-listener: example
spec:
 hostname: “www.example.com”
 tlsSecret:
 name: example-cert

apiVersion: getambassador.io/v3alpha1
kind: AuthService
metadata:
 name: extauth-service
spec:
 auth_service: example-auth
 path_prefix: “/extauth”
 allowed_request_headers:
 - “x-example-session”
 allowed_authorization_headers:
 - “x-example-session”
 - “x-example-userid”

Separation of Concerns

@danielbryantuk | @ambassadorlabs

Extra validation when applying global configuration?

@danielbryantuk | @ambassadorlabs

Interop Example: Emissary-ingress & Linkerd

kubectl -n emissary get deploy emissary-ingress -o yaml | \
linkerd inject --skip-inbound-ports 80,443 - | \
kubectl apply -f -

● CNCF projects
○ Emissary-ingress: n/s gateway

○ Linkerd: e/w service mesh

● Both use Kubernetes Resource Model (KRM)
○ CRDs, controllers, best practices

● One line integration

● Similar configuration across projects

https://cloud.google.com/blog/topics/developers-practitioners/build-platform-krm-part-1-whats-platform

@danielbryantuk | @ambassadorlabs

tetrate.io/blog/using-istio-with-other-ingress-proxies/

https://tetrate.io/blog/using-istio-with-other-ingress-proxies/

@danielbryantuk | @ambassadorlabs

API gateway plugins: love ‘em/hate ‘em

● Plugins/extension/filters provide:
○ Reusability

○ Separation of concerns

○ Performance (?)

● But, they are often highly coupled
○ With the API gateway

○ With the system itself

● Please, please, please don’t put business logic in them!
○ I’ve seen this way too many times

@danielbryantuk | @ambassadorlabs

Wrapping up 🎉

@danielbryantuk | @ambassadorlabs

LearnK8s: https://docs.google.com/spreadsheets/d/191WWNpjJ2za6-nbG4ZoUMXMpUK8KlCIosvQB0f-oq3k/edit?usp=sharing

Tell me more about my (K8s) API Gateway options

https://docs.google.com/spreadsheets/d/191WWNpjJ2za6-nbG4ZoUMXMpUK8KlCIosvQB0f-oq3k/edit?usp=sharing

@danielbryantuk | @ambassadorlabs

Conclusion

● Choosing (or migrating) an API Gateway is a Type 1 decision
○ Tricky to reverse: but the right decision adds a lot of value
○ Clear ownership needed for platform and API gateway

● Treat API Gateways as a product
○ Identify personas and requirements
○ Integration within the wider cloud native comms stack is key

● Think about developer/operator experience
○ Self-service for the win!

● Focus on workflows and tooling interoperability
○ Good integration and appropriate extensions are the key!

@danielbryantuk | @ambassadorlabs

Thank you!

@danielbryantuk

Improving Cloud Native DevEx: The API Gateway Perspective

Moving to the Cloud: Exploring the API Gateway to Success

Platform Engineering Guide 🔧

https://twitter.com/danielbryantuk
https://thenewstack.io/improving-cloud-native-devex-the-api-gateway-perspective/
https://blog.getambassador.io/moving-to-the-cloud-exploring-the-api-gateway-to-success-dae178c7b68
https://www.getambassador.io/kubernetes-learning-center/platform-engineering/

