
Generic or specific?
Making sensible software design decisions

bertjan@openvalue.eu

Making sensible software design decisions
Bert Jan Schrijver

@bjschrijver

Generic or specific?

Bert Jan Schrijver
L e t ’ s m e e t

@bjschrijver

Levels of
generic vs specific

Tools to help decide

Flexibility in software

Definitions
When & why to go
generic

Bonus: sharing code in
an organization

Conclusion

Outline
W h a t ‘ s n e x t ?

The cost of generic

@bjschrijver

What is software design?

Design vs architecture

• Tailor made for use in a single place
• Tailored to a specific problem or scenario
• May not be easily adaptable to other

situations

Specific solution (or design)

• More flexible and reusable solution
• Solution can be applied to a wide range of

problems or scenarios
• Generified solution that can be used in

more than 1 place

Generic solution (or design)

Background source: https://filmquarterly.org/2012/07/02/i-robot-what-do-robots-dream-of/

• Breaking a system or problem into
smaller parts that are easier to
understand

• Example: Google search

Hierarchical decomposition

Background source: DALL·E

Hierarchical decomposition

Source: https://c4model.com

• Kind and degree of interdependence
between building blocks of software

• Measure of how closely connected two
components are

• Usually contrasted with cohesion
(low coupling -> high cohesion)

Coupling

Background source: DALL·E

• Inheritance
• Messages or events
• Temporal
• Data types
• Data
• Code / API (binary or source)

Types of coupling

Background source: DALL·E

Be careful with coupling!

Generic solution = coupling!

The risk of DRY

Duplicated code doesn’t hurt
until you need to change it.

• Should we be prepared for future
changes?

• Design should be structured to
accommodate change

• Risk management: risk of wrong decision

“Future proof” design

Background source: DALL·E

About flexibility in software…

“Highly specific code is often preferable
to sophisticated configuration”

- Stefan Tilkov

When are we going to talk
about generic vs specific?

Background source: https://7216-presscdn-0-76-pagely.netdna-ssl.com/wp-content/uploads/2011/12/confused-man-single-good-men.jpg

• Code / class level
• Manually written vs generated code
• Library level
• Data level
• (Micro)service level
• Organisation level

Generic vs specific: levels

Background source: DALL·E

Generic or specific?

• Do we really need this now? (YAGNI)
• The 5 W’s
• Time/effort for generic vs specific
• Myth of “first time right”
• Complexity and scope
• The rule of three
• Future needs and evolution

Tools to help decide

• When reusing code, copy it once, and only
abstract the third time
• Avoid writing the wrong abstraction
• It’s easier to make a good abstraction from

duplicated code than to refactor the wrong
abstraction

• "Three strikes and you refactor"

The rule of three

Background source: https://learntalk.org/en/blog/where-did-the-saying-third-times-the-charm-come-from

• First case: Just build it, don’t genericise at all.
Solve the problem in front of you (YAGNI)

• Second case: Duplicate the original, redesign and
extract common behaviour while you change

• Third case: examine lessons from first two
passes, design a generic solution that will make it
easy to add your third case

The rule of three

Background source: https://learntalk.org/en/blog/where-did-the-saying-third-times-the-charm-come-from

• Pass 1: YAGNI / rule of three: as simple and specific as
possible

• Pass 2: based on solution domain knowledge:
is a generic solution less work?

• Pass 3: based on problem domain knowledge:
is the easiest solution actually correct?

• Pass 4: looking at customer behaviour or other non
technical considerations, does this change your decision?

Design heuristics

Background source: DALL·E

• Concept from Domain Driven Design
• Tool to help decide for generic vs specific
• But more about building yourself or not
• Subdomains:

• Core domain
• Supporting subdomain
• Generic subdomain

Strategic design

Background source: GR Stocks on Unsplash

• Organizations design systems that mirror
their own communication structure

• Don’t force a solution that goes against
the organisation structure

• Be careful to go generic when teams don’t
want to work together

Conway’s law

Background source: DALL·E

Conway’s law in action

Background source: DALL·E

• Going generic may save time in the long run,
but at which price?

• Another rule of three: building reusable
components is 3x as difficult as single use

• The price you pay is coupling
• Both on code level and people/team level

(communication overhead)

The cost of a generic solution

Background source: DALL·E

What if you get it wrong?

Photo: Dave Lehl

• There are no zero cost abstractions
• Efficiency gains of a generic solution are

typically clear, but how about:
• Onboarding new people
• Readability
• Coupling

The cost of abstractions

Background source: Héctor J. Rivas on Unsplash

• Writing bad abstractions
• Writing unnecessary reusable code
• Introducing unnecessary coupling

• Maintaining bad abstractions
• Hard to see
• Hard to understand
• Hard to extend

The cost of abstractions

Background source: Héctor J. Rivas on Unsplash

When / why to go generic

• ”We’ve always done it like this”
• “We don’t want to depend on libraries”
• “We need to be future proof”
• Because the product owner wants it
• Because the architect wants it

Bad reasons to go generic

• Rule of three checks out
• You’re pretty sure you’re going to need it

almost everywhere
• A library that lots of teams will use
• Complex logic or skills that only a couple of

people have
• Gains are bigger than cost

Valid reasons to go generic

• Think back about the layers in hierarchical
decomposition of a system

• Code vs component vs service
• Are the considerations for generic vs specific the

same on every level?
• Risk when getting it wrong is higher when the level

is higher
• Don’t confuse generification with standardization!

Generic vs specific in different scopes

Background source: Fernando Gomez on Unsplash

Why specific is often faster

Code golf

Advent of code

Exception handling

Website code re-use

49

Generic solutions on organization level

• Sharing code efficiently at scale is hard
• Sharing code at scale means:

• Multiple modules that share code
• Multiple team members
• High rate of change
• Little to no loss of individual productivity

Sharing code within an organization

Source: https://medium.com/@jeffwhelpley/the-problem-with-shared-code-124a20fc3d3b

• Challenges:
• Refactoring
• Versioning
• Reviewing
• Builds and codebase size - monorepo?

Sharing code within an organization

Source: https://medium.com/@jeffwhelpley/the-problem-with-shared-code-124a20fc3d3b

• Monorepo: 1 large repository for a group of
projects (possible all projects)

• Good: easy to make changes across projects
• Bad: dependencies & build times

Monorepositories

Background source: DALL·E

• Discovery: what code / libraries exist?
• Distribution: binary or source dependency?
• Import: well defined API’s or chaos?
• Versioning, upgrades and lifecycle

management
• Who maintains it?
• Possible approach: inner source culture

Considerations on sharing code in an org

Source: https://medium.com/@jeffwhelpley/the-problem-with-shared-code-124a20fc3d3b, background source: Klara Kulikova on Unsplash

Summary

• Consider:
• YAGNI / Rule of three / 5 W’s
• Cost of generic
• Scope / level
• Conway’s law
• Organization

Generic or specific?

Generic or specific?
It depends.

A program that works perfectly but is
impossible to change will become

useless.
A program that does not work but is easy
to change will become and remain useful

continuously.

Source: Clean Architecture, Robert C. Martin

Write. simple. code.

Source: https://images.unsplash.com/photo-1515611926865-4fcb1c2ce28d?ixlib=rb-4.0.3&dl=kelly-sikkema-kxtB2TFBF2g-unsplash.jpg&q=80&fm=jpg&crop=entropy&cs=tinysrgb

Source: https://cdn2.vox-cdn.com/thumbor/J9OqPYS7FgI9fjGhnF7AFh8foVY=/148x0:1768x1080/1280x854/cdn0.vox-cdn.com/uploads/chorus_image/image/46147742/cute-success-kid-1920x1080.0.0.jpg

THAT’S IT.
NOW GO KICK SOME ASS!

Questions?

@bjschrijver

Thanks for your time.
Got feedback? Tweet it!

All pictures belong
to their respective

authors

@bjschrijver

