goto;

GOTO
AMSTERDAM 2023

Generic or specific?
Making sensible software design decisions

#GOTOams

LET US HELP YOU

goto; .
. Ask questions

GOTO

Guide througnh the app

' & 6 & &
also remember to rate session

& App Store

> Google Play THANK YOU! #GOTOams

Generic or specific?
Making sensible software design decisions

Bert Jan Schrijver

Y @bjschrijver

Bert Jan Schrijver

@® OPENVALLE
nl.
® jug

Y @bjschrijver

What's next?

o The cost of generic

Definitions

® When & why to go
generic

Flexibility in software @
—0 Bonus: sharing code in

' an organization

Levels of o

generic vs specific ,
Conclusion

Tools to help decide @

Y @bjschrijver

What Is software design?

Specific solution (or design)

» Tailor made for use in a single place

* Tailored to a specific problem or scenario

* May not be easily adaptable to other
situations

Generic solution (or design)

» More flexible and reusable solution

» Solution can be applied to a wide range of
problems or scenarios

* Generified solution that can be used in
more than 1 place

Hierarchical decomposition

» Breaking a system or problem into
smaller parts that are easier to
understand

» Example: Google search

Hierarchical decomposition

The C4 model for visualising
6 software architecture
= E cdrmodel com
\\
- A
=
=B B =
4 E3
= = — Zoomin -
= B EHEH
Level 1 Level 2 Level 3

Leve 4
Context Containers Com ponents Code

Coupling

» Kind and degree of interdependence
between building blocks of software

* Measure of how closely connected two
components are

» Usually contrasted with cohesion
(low coupling -> high cohesion)

Types of coupling

* Inheritance

* Messages or events

» Temporal

» Data types

* Data

» Code / API (binary or source)

Be careful with coupling!

Duplicated code doesn't hurt
until you need to change It.

“Future proof” design

» Should we be prepared for future
changes?

» Design should be structured to
accommodate change

* Risk management: risk of wrong decision

“Highly specific code Is often preferable
to sophisticated configuration”
- Stefan Tilkov

When are we going to talk
about generic vs specific?

d source: https://7216-presscdn-0-76-pagely.netdna-ssl.com/wp-content/uploads/2011/12/confused-man-single-good-men.jpg

Generic vs specific: levels

» Code / class level

» Manually written vs generated code
» Library level

» Data level

* (Micro)service level

» Organisation level

Generic.

e

. —-—-

' -‘.'

Tools to help decide

* Do we really need this now? (YAGNI)

* The 5 W's

» Time/effort for generic vs specific

» Myth of “first time right” @

» Complexity and scope o e el e e, s
* The rule of three

* Future needs and evolution
O

yourself into a corner by committing too early to
abstractions which turn out poor later on.

The rule of three

» When reusing code, copy it once, and only
abstract the third time
» Avoid writing the wrong abstraction
* |t's easier to make a good abstraction from
duplicated code than to refactor the wrong
abstraction
*» "Three strikes and you refactor"

The rule of three

» First case: Just build it, don't genericise at all.
Solve the problem in front of you (YAGNI)

» Second case: Duplicate the original, redesign and
extract common behaviour while you change

* Third case: examine lessons from first two
passes, design a generic solution that will make it

easy to add your third case

Design heuristics

» Pass 1. YAGNI / rule of three: as simple and specific as
nossible
» Pass 2: based on solution domain knowledge:
IS a generic solution less work?
» Pass 3: based on problem domain knowledge:
s the easiest solution actually correct?
 Pass 4: looking at customer behaviour or other non
technical considerations, does this change your decision?

Strategic design

» Concept from Domain Driven Design
* Tool to help'decide for generic vs specific
» But more about building yourself or not
» Subdomains:
» Core domain
» Supporting subdomain

» Generic subdomain
O sedrndoue GRSk on Unlas

Conway’s law

 Organizations design systems that mirror
their own communication structure

» Don't force a solution that goes against
the organisation structure

» Be careful to go generic when teams don't
want to work together

\ ‘*’
£ A

The cost of a generic solution

» Going generic may save time in the long run,
but at which price?
» Another rule of three: building reusable
components is 3x as difficult as single use
* The price you pay is coupling
» Both on code level and people/team level
(communication overhead)

What If you get It wrong?

hhhhhhhhhhhhhhh

The cost of abstractions

» There are no zero cost abstractions
» Efficiency gains of a generic solution are
typically clear, but how about:
» Onboarding new people
» Readability
» Coupling

The cost of abstractions

» Writing bad abstractions
 Writing unnecessary reusable code
* Introducing unnecessary coupling
» Maintaining bad abstractions
» Hard to see
» Hard to understand

* Hard to extend
O ceoroundsouer et Riason Unplos

Bad reasons to go generic

» "We've always done it like this”

 “We don’t want to depend on libraries”
* “We need to be future proot”

». Because the product owner wants it

* Because the architect wants it

Valid reasons to go generic

* Rule of three checks out

* You're pretty sure you're going to need it
almost everywhere

» A library that lots of teams will use

» Complex logic or skills that only a couple of
people have

» Gains are bigger than cost

Generic vs specific in different scopes

» Think back about the layers in hierarchical
decomposition of a system

» Code vs component vs service

 Are the considerations for generic vs specific the
same on every level?

 Risk when getting it wrong is higher when the level

IS higher

» Don't confuse generification with standardization!

Why specific Is often faster

»
: 4
l"
’
—
i —
! .
,I .
[y

Advent of code

gy

Advent of Code [About] [Events] [Shop] [Setzings] [Log OLt] Bert Jan Schrijver 2€4
2022 [Calencar] [AcC++] “Sponsors] [Leaderboard] [Stals]

--— Day 5: Supply Stacks ---

The exged tion can cepart as scon as the final supplies have been unloadec
from the ships. Supplies are storec 1in stacks of marked crates, but because
the neszded supplies are buriec urder many cother crates, the crates need to
be rearranged.

The ship has a giant cargoe crane czpable of meving crates betwean stacks.
Te ensure ncne o* the crates get crushec or fall aver, the crane operater
will rearrange them in a serdies of carefully-planned steps. After the
crates are rearranged, the desired crates will be at the top of each stack.

The Flves den't want to interrunt the crane operatar during this delicate
pracedure, cut they forgot to ask her whieh c-ate will &nd un where, and
they want tc be reacy to unload them 2s soon as possible so they can
embzrk.

They dc, however, have a drawing of the sterting stacks of crates and the
rearrangement procecure (your puzzle input). For example:

(D:
[N [CC
(2] [M] CP]
1 2 3

meve 1 fram 2 to
meve 3 fram 1 to
moeve 2 fram 2 to
meve 1 from 1 to

N =D -

Q]
[G]
[P]
[R]
(L]
(C]
[T]
[F]

move
move
move
move
move
move
move
move
move
move
move
move

[J]

[s] [Q]

[F]1 [M]

[R] [P] [F]
(W]l [w] [D]
[H] [H] [T]
[Q] [B] [S]
[N] [F] [V]
2 3 4

1 from 8 to
1 from 6 to
3 from 7 to
3 from 2 to

11 from 9 to 3

1 from 6 to

15 from 3 to 9

5 from 2 to
3 from 7 to
6 from 9 to
6 from 1 to
2 from 3 to

[Z]
[F]
[V]
(W]
(D]
[L]
[Q]
5

1
1
4
9

9

SNoyw o w

[S]
[L]
[C]
[Z]
6

[F]
(D]
[v]

[H]
[P]
[S]
[L]
[G]

(M] [B] [B]
(B] [J] I[N]
(z] [T] [Q]

7

8

9

Scanner scannar = new Scarner(input);
List<String> lines = new ArrayList<>();
List<String> instructions = new ArraylList<>();

// determine initial matrix width/nheight dimensions
int maxLinelLength = 0, initialMatrixHeight = 0;
while (scanner.hasNextLine()) {
String line = scanner.nextLine();
lines.add(line);
if (Wne.contains("[")) { initialMatrixHeight++; }
if (Uine.2ndsWith("]") && line.length() > maxLineLength) { maxLineLength = line.length(); }

}
int initialMatrixWidth = (maxLinelength + 1) / 4;

Natrix matrix = new Matrix(initialMatrixWidth, initialMatrixHeight);

// init matrix and instruction
inty = 0;
for (String line: lines) {
if (Une.contains("[")) { // matrix line
Y+,
for (int x=1; x<initialMatrixWidth+1; x++) {
matrix.put(x, vy: initialMatrixHeight-y+1, line.charAt(4x(x-1)+1));

}

} else if (line.startsWith("move™”)) { instructions.add(line); }

ArrayList<String>
ArrayList<String>
ArrayList<String>
ArraylList<String>
ArrayList<String>
ArraylList<String>
ArrayList<String>
ArrayList<String>
ArrayList<String>

stackl
stack2
stack3
stack4
stack5
stacké
stack7
stack8
stack9

new
new
new
new
new
new
new
new
new

ArraylList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.
ArrayList<>(Arrays.

asList("F",
asList("R",
asList("C",
asList("F",
asList("L",
asList("Q",
asList("F",
asList("D",
asList("P",

"p","B", "z","T", "J","R","N"));
"s", "N, "J","H"));

"R","N", "J","6", "Z","F", "Q"));
"y*, "N, "6", "R", "T", "Q"));
T, "Q", "F"));

"c","w", "z","B", "R","G", "N"));
"c","L", "S","N", "H","M"));
"N", *Q*, *M","T", "3"));

6", "S");

andling

AT xceﬁtlon

@ControllerAdvice
public class ControllerExceptionHandler {

@fExceptionHandler(value = {ResourceNotFoundException.class, CertainException.class})
public ResponseEntity<ErrorMessage- resourceNotFoundException(ResourceNotFoundException ex, WebRequest request) {
ErrorMessage message = new ErrorMessage(
status,
dale.
ex.getMessage(),
description);

return new ResponseEntity<ErrorMessage-(message, HttpStatus.NOT_FOUND);
¥

Website code re-use

meawing. | oves to sl Lside if the tries hard when he thn<s he's bungry, even where he wants. He 1ps when he gers
! ' E
OPENVALUE weather s nice. when ha just ate. Keyboards are great places attartion and will loudly protast if you slesp
o walk in. Will lick your nose.

OFPENVALUE

@
1y
i
s e . Deoes no: | ke strangars, will protect herealf Higrly erergetic good-weather cat. Prafere Enjoys sleaping 0n a very specfc caair in the
Meet the drlv' ng fo rce behlnd o u r tea m a de. (rherwise meaws at you unril she weignt loss over fooe thar is rat up to his kitchen. He cnas not ap) 2 twhen
has your urdivided attzntion. stanc Sle n you- lap and will meow people resd said chair. Wil annoy them

Looking for their Jave-developing owners? Vis'T openvalue.eu!

kzckir conversation. Favor te hooky? untilic's 1

Jumping on your back. king, as o

aveilzb e again. Is otherw se

a5 ne sleaos.

Frummel Philly

She's ke a whirlvind ir the house. Ve Despite being 4 terrific singsr, canncl meow Expedts w0 be irvoved in all daily operatons
clingy and will meow i you wak away, Steals Frobzb v because he grew up w th dogs”? inthe house, Yes, al cf them,

your sacks and might oite when nat pettad
corracthy.

youngsters Max and angercis

Ti getje do ing. _ets he takers

nthe

7, which only enceura,

think they are inenntro . Fxpe
Frummel. Imagine when he grows up. picked up anc brougnt to her s
accommedations.

arning and recently discove
balls.

OpenValue. High quality cats. 15 seasoned full snack experts.

Find us online;

Curicus and zttenton-hungry. Fals at Eit cf a civa, lcves attention and makes sure Loves mzinly 2 thirgs: breakiast and d'nner.
hunting kirds and butterflies but never gives you know it Wil jein you or a3 walk b Affactior towards a-yone is oropartionate to

up! Her name maans snow. She hates srow. dawn and meows when you go too fa when she's hac her ast meal. Regularly

harre. disappears for a day.

Generic solutions on organization level

Sharing code within an organization

» Sharing code efficiently at scale is hard
» Sharing code at scale means:
» Multiple modules that share code
» Multiple team members
» High rate of change
» Little to no loss of individual productivity

Sharing code within an organization

» Challenges:
 Refactoring
» Versioning
* Reviewing
» Builds and codebase size - monorepo?

Monorepositories

» Monorepo: 1 large repository for a group of

projects (possible all projects)
» GOoOod: easy to make changes across projects

» Bad: dependencies & build times

Considerations on sharing code in an org

» Discovery: what code / libraries exist?

» Distribution: binary or source dependency?

» Import: well defined API's or chaos?

» Versioning, upgrades and lifecycle
management

» Who maintains it?

» Possible approach: inner source culture
L o si/medumcon/@jefunelly/the protlem-ith shre <ode-124620f3dst, bockgroundsource ot Kulkovs on Unsplash

Generic or specific?

» Consider:
* YAGNI / Rule of three / 5 W's
» Cost of generic
* Scope / level
» Conway's law
» Organization

Generic or specific?
't depends.

A program that works perfectly but is
impossible to change will become
useless.

A program that does not work but is easy
to change will become and remain useful
continuously.

.

" ‘ THATSIT,
NOW GOKICKSOMERSS!

1 8.8 8 8 ¢

Remember to
rate this session

FTHANK YOU!

Download on the
® App Store

GETITON
< Google Play #GOTOams

