Fighting Climate Change by Building Sustainable Software

Ioannis Kolaxis – Software Architect / Distinguished Expert

GOTO Amsterdam 2022

Short Biography

Ioannis Kolaxis Architect / Distinguished Expert

- Book author: Green Software
- Inventor (5 Patents)
- 1st winner: Atos Innovation Week 2021 & 2020
- Worked for IBM, SIEMENS
- Speaker (Oracle Code One 2019)

You Can Fight Climate Change!

By Following Sustainable Practices in Your Work

By the end of this talk, you will be able to make a real impact in your work as IT professional, to help prevent climate change

Climate Change

What is the Problem?

Greenhouse gases (CO₂, CH₄, ...) in earth's atmosphere trap heat \rightarrow increasing temperature

Who emits the most carbon?

a. Industry

b. Transport

c. Electricity & Heat Producers

CO₂ Emissions Per Sector (2018)

Our Contribution To Climate Change Electricity Consumed by IT

~2% of global electricity in 2019
was consumed by:

► Data centers (200 TWh)

► Data networks (250 TWh)

Source: IEA (2020), Data Centres and Data Transmission Networks, IEA, Paris <u>https://www.iea.org/reports/data-centres-and-data-transmission-networks</u>

Finding the Best Route

曰 Drive

17 min (4.8 mi)

Most fuel-efficient route, the usual traffic

8% lower CO2 emissions than the fastest route Based on average fuel consumption for vehicles in your region. Learn more ► Options:

- Fastest route
- Shortest distance
- Fuel-efficient route

Source: https://blog.google/products/maps/redefining-what-map-can-be-new-information-and-ai/

Data Networks

How can we consume less electricity?

Minimize distance (hops) for data transferred over the network

- Place your servers close to your customers
- Process data at its source (Edge)

Data Networks

How can we consume less electricity?

Reduce size of data sent over the network

- Filter out unnecessary data
- Compress before transfer

Journey to Decarbonization

Don't send your data around the world!

Data Centers

How can we consume greener electricity?

Host your application in a region that consumes clean energy

- Europe: Finland, Belgium, Zurich
- North America: Montréal
- South America: São Paulo
- USA: Oregon, Iowa

Source: <u>https://cloud.google.com/sustainability/region-carbon</u>

Up to **50%** of the servers in your data center are idle, doing nothing: they just **waste energy**!

Data Centers

How can we consume less electricity?

Using Redundant Servers

For Highly-Available Applications

Normal Operation

Server A handles every request to the application

Server A' is redundant, not serving any requests, just waiting for a failure to happen

Server A had failed!

Server A' (previously standby/redundant) now handles every request to the application

Using Redundant Servers

For Highly-Available Applications

A Car With Redundant Engine

Citroën 2CV Sahara (1958-1966)

- 2 engines for redundancy
- 2 petrol tanks

Containers can be started in a fraction of the time it takes for **Virtual Machines**

Redundant Servers

Why Do We Need Them?

- If we didn't have a redundant server ...
 - How long would it take us to spin up a new instance?

	Virtual Machines	Containers
Size	GB	MB
Startup time	Minutes	Seconds

You don't have to run any redundant instances of your application!

Leveraging Containers

For Highly-Available Applications

Journey to Decarbonization

You don't need redundant servers on the cloud!

Modern Cars With Stop/Start

Improved fuel efficiency by stopping the engine when not needed:

- Traffic jams
- Red traffic lights

Is your application waiting most of the time, without doing any actual work?

Consuming Resources

Although the Application is Idle

App OS Server

Functions are triggered by:

- HTTP requests
- Events (e.g., file upload)
- New messages in queue
- Tasks scheduled at a given time (cron jobs)

Rearchitecting Applications That Are Idle Most of the Time

App as Short-Lived Functions

Serverless Functions

Run Your Code Without Managing Servers

- Automatic scaling of individual functions
- Your code consumes energy only while processing requests!
- Supported languages in Azure:
 - Java TypeScript
 - C# – Python
 - F#
 - JavaScript

PowerShell

Google Cloud **Functions**

Serverless Applications Run Containers Without Managing Servers

- More flexibility than Serverless Functions:
 - Run code written in any language (packaged in a container)
 - Support long-running tasks (days, weeks)

AWS Fargate

Journey to Decarbonization

Introduce a stop/start mechanism in your software applications

Green Cars

Transitioning to Environmentally-Friendly Cars

Car fuels make the difference:

– Diesel

– Petrol

– LPG

- Electricity

The "fuel" for software apps → Programming

languages:

- Compiled

Running on VMs

- Interpreted

Programming Languages

Language	Туре	Energy
С	Compiled	1.00
Rust	»	1.03
C++	»	1.34
Ada	»	1.70
Java	Virtual Machine	1.98
C#	»	3.14
JavaScript	Interpreted	4.45
TypeScript	»	21.50
PHP	»	29.30
Ruby	»	69.91
Python	»	75.88
Perl	*	79.58

Compiled languages tend to be the fastest and most energy-efficient ones.

Source: <u>R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J.</u> <u>Fernandes, J. Saraiva, "Energy efficiency across</u> <u>programming languages: How do energy, time, and memory</u> <u>relate?", International Conference on Software Language</u> <u>Engineering, Oct 2017.</u>

Journey to Decarbonization

Identify energy consuming components, used by many users, and rewrite them in an energy-efficient language

Java in the Spotlight

Java ranks as the 2nd primary language used by developers

► Java 8 is used by 72% of them

- Latest release: Java 18 (March 2022)

Source: JetBrains (2021), State of the Developer Ecosystem Survey https://www.jetbrains.com/lp/devecosystem-2021/

Use the Latest Version of Java

To Benefit From Smaller Memory Footprints

- Since Java 9: enhanced memory allocation for String objects
- Memory footprint & performance improvements of up to 10%

More info: <u>https://www.kolaxis.dev/will-your-applications-run-faster-with-java-9</u>

Use the Latest Version of Java

To Benefit From Smaller Memory Footprints

Instance #1 Instance #2 Instance #N [Java application] [Java application] [Java application] ... An instance of your An instance of your An instance of your Java application. Java application. Java application. Java Virtual Java Virtual Java Virtual Machine Machine Machine [HotSpot/OpenJ9] [HotSpot/OpenJ9] [HotSpot/OpenJ9] ... Reads/writes data Reads/writes data Reads/writes data from/to the Classfrom/to the Classfrom/to the Class-Data Sharing cache. Data Sharing cache. Data Sharing cache.

> Class-Data Sharing [Cache]

Contains: Bootstrap classes, Application classes, Metadata about the classes, Ahead-Of-Time compiled code (OpenJ9)

More info: https://www.kolaxis.dev/reduce-the-cloud-bill-of-your-java-applications

 Since Java 10: applications running on the same host can leverage Class-Data Sharing (CDS)
 Deduce memory feetprint by

Reduce memory footprint by ~15%

Journey to Decarbonization

Upgrade to the latest version of Java

Less is... Green!

Reduce Your Cloud Bills for Sustainable Software

- Cloud bills depend on:
 - Network traffic,
 - Used resources (CPU, RAM) x Time
- Less money spent on cloud bills
 - More energy-efficient software

<Your Cloud> Well-Architected

Frameworks of Best-Practices

► A Critical score (0-33%) in

Azure Well-Architected implies an energy-inefficient application.

CRITICAL	Room to improve. It looks like there are key items needing attention				
Critical 0-33	Moderate 33-67	Excellent 67-100	Your result: 30/100		

Take the assessment here: https://docs.microsoft.com/en-us/assessments/

AWS, Azure & Google Cloud all have **Architecture Frameworks** that assess your application against:

- Cost
- Performance

Sustainability is the newest "-ility"

- Include sustainability in your discussions:
 - Availability,
 - Scalability,
 - Maintainability,

The Green Software Book

Wrote a practical guide for developers & architects

101 GREEN SOFTWARE PRACTICAL GUIDE FOR DEVELOPERS &

ARCHITECTS

IDANNIS KOLAXIS

Your Journey to Decarbonization

Reduce cost of running your applications on cloud!

Rewrite components consuming most energy, using efficient languages

Rearchitect long-lived apps to short-lived functions

Adopt an energy-efficient high availability model (Containers vs redundant servers)

Reduce data transferred over the network

Upgrade to the latest version of Java

What actions will you take to help prevent climate change?

Tweet your answer!

Thank you

🔰 @IoannisKolaxis

Atos, the Atos logo, Atos|Syntel are registered trademarks of the Atos group. April 2021. © 2021 Atos. Confidential information owned by Atos, to be used by the recipient only. This document, or any part of it, may not be reproduced, copied, circulated and/or distributed nor quoted without prior written approval from Atos.

