

Security Styles

GOTO Amsterdam 2022

Eleanor Saitta / Systems Structure Ltd.

Two styles, both alike in dignity
In fair Internet, where we lay our scene

Type one: Run phishing tests, with a leaderboard
so everyone knows who gets caught most often.
Require mandatory training if you click on a link.

Type two: Roll out U2F tokens, eliminate native
office clients, and build out-of-band confirmation
loops for business processes. Mention phishing
briefly in the annual training.

How do you stop phishing?

Type one: Use policy to build hard checkpoints
into everyone’s processes. Block functionality at
deploy and allow developers to discover what
won’t work in prod.

Type two: Give devs candy and make friends with
them. Sit in on team meetings so you hear about
plans early. Document everything.

How do you work with other teams?

Type one: Put a WAF in front of it, or better yet a
firewall appliance, and install an endpoint security
tool on the VM.

Type two: Have a human and some robots test it.
Fix stuff. Instrument what it does so you can see if
it acts weird. Make it immutable and ephemeral.
Eliminate egress. Add rate limiting.

How do you defend a service?

Type one: Do what the standard says. Hire
someone to do the paperwork for the auditor.
Use policy to force teams to do their part.

Type two: Figure out what’s technically sensible for
the spirit of the regs and automate that. Integrate
the automation into team workflows. Sell it to your
auditor and work to help them understand it.

How do you handle compliance?

Type one, small team: Write some code to fix each
instance, one at a time.

Type one, big team: Write some code that creates a
statistical mitigation that reduces the likelihood of the
attack succeeding.

Type two: Fix the underlying structural problem at the
framework level, with testing to confirm you’ve covered
all paths.

How do you fix vulnerabilities?

Type one: If a breach is (can be) attributed to
human error, fire the person responsible, as per
policy.

Type two: Have the person help you understand
the drivers that led them to make the choices
they did, and fix those structures/systems.
Celebrate their contribution.

How do you handle mistakes?

Type one: Look at industry best practices and
compliance requirements. Buy what you have
budget for, and put anything you can’t buy a
solution for in the risk register and call it mitigated.

Type two: Reason about your technical, business, and
human systems, from first principles. Design a solution
that meets both business and security needs.
Implement it collaboratively.

How do you make decisions?

Ditch all your Windows boxes — use Macs/Chromebooks
and ditch Office for Workspace

Yubikeys for everyone, everything tied to SSO

Get some Thinkst Canaries in prod/if you have an office

Backup everything and make sure it’s tested

Track where your data is and be careful where it goes

Treat code as an expense, not an asset

Include maintenance when costing new SaaS tools

Quick tips for starting from zero

Systems exist to do things in the world

To be useful, they need to have certain emergent
properties

Whole-system properties which occur in a specific
context

Require unified effort to deliver

What is a System?

• Correctness
• Performance
• Efficiency
• Reliability

• Observability
• Security
• Resilience

Properties you care about:

A secure system is one that:
• Enables a chosen set of people to predictably

accomplish specific goals
• Does so in the face of actions by a chosen set

of adversaries
• Predictably prevents that chosen set of

adversaries from

What is Security?

Alternately:
• Reliability and correctness of outcomes in the

presence of an adversary
• Close-loop defense of outcomes

What is Security?

The ability of a system to deal with unforeseen
modes of failure without complete failure

Resilience is a property of humans, not code

What is Resilience?

Designing both processes and technical systems
in accordance with specific principles leads to
desired emergent properties

Properties of technical artifacts vs. properties of
human processes

Designing for Resilient Security

You are responsible for the impact of your work
on people’s lives.

A domestic violence victim seeking an abortion

A queer teen

A union organizer

Personas to Examine

A selection of interesting system design principles:
• Statelessness/Logiclessness
• Immutability and Ephemerality
• Canonical Stores
• Unlinkability

Component Principles

Services should either do computation or hold
state, not both

Complex components are unpredictable

State and Logic

Data, configuration, and memory are all state

Immutable systems eliminate unnecessary state

Respinning a cluster resets state

Immutability and Ephemerality

Every piece of state should exist canonically in
exactly one place

As few systems as possible should be stores of
state

Any duplicated state must be validated

Minimal, Canonical State

Privacy and anonymity are ill-defined

X piece of data is unlinkable to Y piece of data
under these assumptions

Unlinkability

And a few for the human side of the org:
• Declare and Generate
• Design for Failure
• Decide at the Edge
• Slack

Process Principles

Declarative configurations are easier for both
humans and computers to create, compose, and
validate

Use parser generators, strongly typed languages,
and state machine generators

Declare, don’t Program

Failure and compromise are inevitable

Design components and systems to handle both
predictable and unpredictable types of failures

Think about security controls as a whole, assuming
that some layers will always fail

Build the system you’d like to have during a
compromise or outage

Design for Failure

Empower teams and engineers to work
autonomously, so decisions can happen where
people have full context

Focus on coordination and communication over
control

Ensure teams have thick horizontal relationships
outside of formal processes

Decentralize Decisionmaking

Resilience requires teams to have downtime

Improving any emergent property takes more
time than the bare minimum

Apply hard caps to feature velocity, ensure
people take vacations, have large on-call
rotations, and track out of hours work

Slack

ella@structures.systems

Startup looking to get
serious about security?

Let’s talk.

Eleanor Saitta
Systems Structure Ltd.

	Slide Number 1
	Security Styles
	Two styles, both alike in dignity�In fair Internet, where we lay our scene
	How do you stop phishing?
	How do you work with other teams?
	How do you defend a service?
	How do you handle compliance?
	How do you fix vulnerabilities?
	How do you handle mistakes?
	How do you make decisions?
	Slide Number 11
	Quick tips for starting from zero
	What is a System?
	Properties you care about:
	What is Security?
	What is Security?
	What is Resilience?
	Designing for Resilient Security
	Slide Number 19
	Slide Number 20
	Personas to Examine
	Component Principles
	State and Logic
	Immutability and Ephemerality
	Minimal, Canonical State
	Unlinkability
	Process Principles
	Declare, don’t Program
	Design for Failure
	Decentralize Decisionmaking
	Slack
	Slide Number 32
	Slide Number 33

