Live Hacking: Breaking into
Your Web App

Brian Vermeer
@BrianVerm

@BrianVerm snyk

DevSecOps

@BrianVerm snyk

s Java Champion

Virtual JUG leader

NLJUG leader

DevSecCon co-leader

Brian Vermeer

Developer Advocate Foojay Community
snyk Manager Security
@BrianVerm Top 21 Developers

Shaping Tech

@BrianVerm snyk

What are the Problems?

1. Software delivery sped up with little thought to security
2. Lack of security focus throughout the app lifecycle
3. Silo-ed security expertise

4. Customer data could be compromised

@BrianVerm snyk

How s the Situation?

@BrianVerm snyk

EQUIFAX DATA BREACH

Equifax’s Mega-Breach Was Made Possible by

Security a Website Flaw It Could Have Fixed
Equifax's disastrous Struts patching

blunder: THOUSANDS of other orgs
did it too

Those are just the ones known to have downloaded
outdated versions

Fallure to patch two-month-old bug led
to massive Equifax breach

Critical Apache Struts bug was fixed in March. In May, it bit ~143 million US consumers.

DAN GOODIN -9/13/2017, 11:12 PM

@BrianVerm snyk

Your App

@BrianVerm

snyk

YburApp,

Your Code

@BrianVerm

snyk

Serverless Example: Fetch file & store in s3

(Serverless Framework Example)

: {

.

fetch quire('node-fetch');

const AWS = require('aws-sdk'); . ||/\2 7 9”
: | » = . '
const s3 = new AWS.S3(); A "
. : 1.0.3
- .save = (, context, callback) => { }
fetch(ev -)
.then((response) => {
if () {

2 Direct dependencies

return Promise.reject(new Error(
‘Failed to fetch . : A - S IF
})

19 dependencies (incl. indirect)

.then(buffer => (
.putObject ({

S 191,155 Lines of Code

.then(v => callback(null, v), callback);

19 Lines of Code
@BrianVerm snyk

https://github.com/serverless/examples/tree/master/aws-node-fetch-file-and-store-in-s3

v @ goof
> @ config
> i domain
> @ handler

> @ repository
CreateTodoFunction.java
DeleteTodoFunction.java
GetTodoFunction.java
GoofApplication.java

ImportTodosFunction.java

) @3 [m) [[)

UpdateTodoFunction.java
@Component ("CreateTodoFunction")

public class CreateTodoFunction implements Function<TodoRequest, TodoResponse> {

@Autowired
TodoRepository ;

public Todo createTodo(final Todo todo) {

return .save(todo);

@Override
public TodoResponse apply(final TodoRequest todoRequest) {
final TodoResponse = new TodoResponse();

.setResult(createTodo(.getTodo()));

return result;

222 Lines of Code

@BrianVerm

Spring Serverless Example

snyk/serverless-spring-goof
+| org.springframework.cloud:spring-cloud-function-adapter-aws@1.0.0.RC2

n org.springframework.data:spring-data-rest-webmvc@2.6.6.RELEASE

n com.fasterxml.jackson.core:jackson-databind@2.9.3

com.amazonaws:aws-java-sdk-dynamodb@1.11.34

com.github.derjust:spring-data-dynamodb@4.3.1

5 Direct dependencies
54 dependencies (incl. indirect)

460,046 Lines of Code

snyk

Open Source Usage
Has

@BrianVerm snyk

Attackers Are
Open Source

One vulnerability, many victims

@BrianVerm snyk

@BrianVerm

New packages created by

ecosystem per year g srk
400k
300k @ Maven Central
200k . o
@ NuGet
100k ¢ PyPI
II I @® Rubygems
0 - -

2015 2016 2017 2018 2019

https://info.snyk.io/sooss-report-2020

ﬁ snyk

https://info.snyk.io/sooss-report-2020

Vulnerabilities identified in g snyk
ecosystems since 2014

500
o
/.
o
o
400 °
o
® @ MavencCentral
®
o e
) " npm
200 . @ @® NuGet
®
* 4 .x .
'"7‘< ®
o o
100 / / o @ PHP Packagist

2014 2015 2016 2017 2018 2019

@BrianVerm https://info.snyk.io/sooss-report-2020 ﬁ snyk

https://info.snyk.io/sooss-report-2020

Vulnerabilities from direct versus ” snyk
indirect dependencies

@ Direct © Indirect

100%

75%

50%

25%

26% 19%
0%
PHP Maven RubyGems npm
Packagist Central

@BrianVerm https://info.snyk.io/sooss-report-2020 “ snyk

https://info.snyk.io/sooss-report-2020

@BrianVerm

OS maintainers are confident in their

own security knowledge

7%

@ High

O Medium

® Llow

” snyk

ﬁ snyk

Who should be responsible ” snyk
for security?

@ software O Infrastructure

100%

85%

i

75%

55% 56% 56%

l ;

90%

25%

3% 3% 2% 2%
0% [—
Developers Security team Operations Other Nobody

@BrianVerm https://info.snyk.io/sooss-report-2020 H snyk

https://info.snyk.io/sooss-report-2020

How do you find about vulnerabilities?) snyk

36%

@BrianVerm

2%

10%

| probably won’t

I read the release notes of most of my direct and
indirect dependencies

When my security team reports a severe vulnerability,
we search for apps using this component

We track the list of dependencies against public
databases (e.g. CVEs) ourselves

We use a dependency management/ scanning tool
that notifies us

Other

H snyk

Vulnerabilities generally remain
undiscovered for a long time.

The median time from inclusion to discovery

for in application libraries:

@BrianVerm @ snyk

Vulnerabilities generally remain
undiscovered for a long time.

The median time from inclusion to discovery
for in application libraries:) years

@BrianVerm H snyk

Let’s HACK!

oocker

@BrianVerm

Vulnerabilities per Docker image

600

130
91
80
63 - o
42 42
. - - - - ;

httpd postgres nginx mongo mysql couchbase memcached redis ubuntu

@BrianVerm

When do you scan your Docker i snyk
image for OS vulns?

During development

At build time

In production

Periodically during audits

Other

We don't

How do you find out about e -_
new vulnerabilities in your d
deployed containers?

We use scanning tools

My security team

We track the
public databases

Other .

| probably won't

Let’s HACK!

What's the Solution?

gt

Culture Process Tooling

£ pas

@BrianVerm snyk

@BrianVerm

Culture

What do people care about?

(/ > Developers
Q Operations
a Security

&\ Management

snyk

Process

The best way to adopt a new practice is to
Integrate it into existing processes,

not create more.

@BrianVerm snyk

Tooling

Tooling can help
Automate away manual steps

Alert you to issues when they happen

@BrianVerm snyk

App Code @ Snyk Code

e N’
e e
Open Source Code g Snyk Open Source
Containers U Snyk Container
Infrastructure
as Code @ Snyk |aC

@BrianVerm snyk

DevSecOps in your SDLC

~
Production
Traditional/PaaS
Serverless
submit build deploy
® ® ®
Kubernetes
e e e
_ Registry
Code Git repository Cl/CD
O O O
. Test, fix, Test, fix, .
Test & fix monitor . Monitor & more...
_ \ _ \ /

@BrianVerm

snyk

“Shift left” is not enough

—— P N
», w2 o
00 44, @VQ’ 6:0
o < <
&) : (o}
v Empower ' Enable security
developers teams .
¢ (o)
P A 1 &
‘o ,\@(’ 25 Qy&
....................... R .. °®
............... } ‘ - O

Empowering developers to build applications securely
within the entire development process

@BrianVerm snyk

http://bit.ly/java-sec

urity

Cheat sheet: 10 Java security best practices

1. Use query parameterization
Use prepared statements in Java to parameterize your SQL statements.

B3 String query = "SELECT * FROM USERS WHERE

lastname = parameter;

2. Use OpenlID Connect with 2FA

OpenlD Connect (OIDC) provides user information via an ID token in
addition to an access token. Query the /userinfo endpoint for
additional user information.

3. Scan your dependencies for known

vulnerabilities

Ensure your application does not use dependencies with known
vulnerabilities. Use a tool like Snyk to:

Test your app dependencies for known vulnerabilities
Automatically fix any existing issues

Continuously monitor your projects for new vulnerabilities
over time

4. Handle sensitive data with care
Sanitize the toString() methods of your domain entities.

If using Lombok, annotate sensitive classes. @ToString.Exclude

Use@JsonIgnore and @JsonIgnoreProperties

to prevent sensitive properties from being serialized or deserialized.

@BrianVerm

5. Sanitize all input

Consider using the OWASP Java encoding library to sanitize input.

Assume all input is potentially malicious, and check for inappropriate
characters (whitelist preferable).

6. Configure your XML parsers to prevent XXE

Disable features that allow XXE on your SAXParserFactory and SAXParser, or
equivalent.

SAXParserFactory factory = SAXParserFactory.
newInstance();

SAXParser saxParser = factory.newSAXParser();

factory.setFeature("http://xml.org/sax/features/
external-general-entities", false);
saxParser.getXMLReader () .setFea-
ture("http://xml.org/sax/fea-
tures/external-general-entities", false);
factory.setFeature("http://apache.org/xml/

features/disallow-doctype-decl", true);
7. Avoid Java serialization

If you must implement the serialization interface, override the readObject
method to throw an exception.

private final void readObject(ObjectInputStream in)
throws java.io.IOException {
throw new java.io.IOException("Not allowed");

}

If you have to deserialize, use the ValidatingObjectinputStream from Apache
Commons |0 to add some safety checks.

FileInputStream fileInput = new FileInputStream
(fileName);
ValidatingObjectInputStream in = new Validatin

snyk

gObjectInputStream(filelnput);

in.accept(Foo.class);
Foo foo_ = (Foo) 1in.readObject();

8. Use strong encryption and hashing algo-
rithms

Always use existing encryption libraries, such as Google Tink, rather
than doing it yourself.

For password hashing, consider using BCrypt or SCrypt. If using
Spring, you can use it’s built-in BCryptPasswordEncoder and
SCryptPasswordEncoder for your hashing needs.

9. Enable the Java security manager

Enable via JVM properties on startup:
-Djava.security.manager

Create a policy that you use for your applications:

-Djava.security.policy==/my/custom.policy

10. Centralize logging and monitoring

Log auditable events, such as exceptions, logins and failed logins
with useful information including their origin.

Centralize logs from multiple servers with tools like Kiba:

Monitor key system resources that indicate attack spikes or load
from specific IP addresses.

Authors

@manicode

= Java Champion &
Manicode Security
founder

@BrianVerm
y Developer Advocate
atSnyk

http://bit.ly/npm-sec

snyk Cheat Sheet: m 10 npm Security Best Practices

1. Avoid publishing secrets to the npm registry

Run npm publish --dry-run to review the package before
publishing

Put sensitive files in . gitignore

Use the files property in package.json to whitelist files
and directories

2. Enforce lockfile

Freeze lockfile and ensure the npm CLl installs per
lockfile only, without changing it. In Cl and build
environments favor:

$ npm ci

$ yarn install --frozen-lockfile

3. Minimize attack surface—ignore run-scripts

Malicious packages take advantage of key lifecycle events
when an npm install runs arbitrary commands.

To minimize this attack surface:

1 Assessa project’s health status and credibility before
installing a package

2 Disable run-scripts during install such as:

$ npm install <package> --ignore-scripts

4. Assess npm project health

Review a project for outdated dependencies, and assess
environment health with CLI commands:

$ npm doctor
$ npm outdated

http://snyk.io/blog

5. Scan and monitor for vulnerabilities in open
source dependencies

8. Enable 2FA
Enable two-factor authentication on npm with

Don’t let vulnerabilities in your project dependencies reduce the

) - rofi -2 e
security of your application. Make sure to: Spnoafpro fillefenableg fajiauthgandawrites

Connect Snyk to GitHub or other SCMs for optimal CI/CD
integration with your projects 9. Use npm author tokens

Runsnyk test toscan a new project from the CLI

Run snyk monitor to track and open PRs to automatically

X - S) restricted token:
fix security vulnerabilities in open source dependencies.

www.snyk.io

Make use of restricted tokens for querying npm packages and
functionalities from ClI by creating a read-only and IPv4 address range

$ npm token create --read-only —cidr=192.0.2.0/24

6. Use a local npm proxy

Alocal private registry such as Verdaccio will give you an extra layer
of security, enabling you:

10. Understand typosquatting risks

Typos in package installation can be deadly.
1 Full control of lightweight private package hosting

Be mindful when copy-pasting package install instructions

To cache packages and avoid being affected by network to the terminal and verify authenticity.

and external incidents

2

Opt to have a logged-out npm user in your developer environment

Easily spin up verdaccio using docker:

Favor npm install with --ignore-scripts
$ docker run verdaccio/verdaccio

7. Responsible disclosure

Publicly disclosed security vulnerabilities without prior warning and
proper coordination pose a potentially serious threat.

We are happy to collaborate on responsible security disclosures for the
npm community:

1 Reporta security issue via the vulnerability disclosure form
Authors:

2 Email us at security@snyk.io

u@l n_tal

Node.js Security WG & Developer Advocate at Snyk

@jotadeveloper
Core maintainer at Verdaccio

snyk

http://snyk.io/blog

Questions?

BRIAN VERMEER

BRIANVERMEER@SNYK.IO

@BRIANVERM

@BrianVerm snyk

mailto:BRIANVERMEER@SNYK.IO

