


Why Should You Look 
into Low Code?
Christoph Windheuser, OutSystems
GOTO Amsterdam
June 15, 2022 



“A lot of low-code tools are being promoted 
with this kind of naive starting point that code 
is somehow bad, and that rankles a lot with 
programmers,”

Mike Mason, Global Head of Technology at Thoughtworks
in "Does Low Code Mean More Work or More Freedom for Developers?", 
THENEWSTACK, Feb. 2022

https://thenewstack.io/does-low-code-mean-more-work-or-more-freedom-for-developers/


Agenda
● Why Low Code?

● What is Low Code?

● Things to consider when using Low Code

● Future of Low Code

● Summary



Agenda
● Why Low Code?

● What is Low Code?

● Things to consider when using Low Code

● Future of Low Code

● Summary



Writing software 
is still a very 
manual process.



But:

● 500 Mio Apps have to be 
build in the next 3 years
IDC study 2019(1)

213 Mio companies worldwide

● By 30 Mio developers today?
50 Mio StackOverflow visitors each month
40 Mio Github users
24 Mio developers estimated by 
Evans Data Corporation (2)

● 5 - 6 Apps per Dev per Year?
(1)https://www.businesswire.com/news/home/20191029005144/en/IDC-FutureScape-Outlines
-the-Impact-Digital-Supremacy-Will-Have-on-Enterprise-Transformation-and-the-IT-Industry
(2) https://evansdata.com/press/viewRelease.php?pressID=278

https://www.businesswire.com/news/home/20191029005144/en/IDC-FutureScape-Outlines-the-Impact-Digital-Supremacy-Will-Have-on-Enterprise-Transformation-and-the-IT-Industry
https://evansdata.com/press/viewRelease.php?pressID=278
https://www.businesswire.com/news/home/20191029005144/en/IDC-FutureScape-Outlines-the-Impact-Digital-Supremacy-Will-Have-on-Enterprise-Transformation-and-the-IT-Industry
https://www.businesswire.com/news/home/20191029005144/en/IDC-FutureScape-Outlines-the-Impact-Digital-Supremacy-Will-Have-on-Enterprise-Transformation-and-the-IT-Industry
https://evansdata.com/press/viewRelease.php?pressID=278


So what can be 
done? ● Make developers more 

efficient

● Enable more people to 
develop



Agenda
● Why Low Code?

● What is Low Code?

● Things to consider when using Low Code

● Future of Low Code

● Summary



Low Code is emerging everywhere!

High Code 
made easy

Workflows / BPM / RPA
(Robotic Process Automation)

Low Code for 
critical Apps
(MXDP = Multi-Experience 
Development Platform)

Data
Analytics

Machine
Learning

From 
Customizing 
to Coding

No Code / Citizen 
Developer



The Low Code / No Code market is booming

● 47% of enterprises are using Low Code / No Code
(2021 TechRepublic Survey 
https://www.zdnet.com/article/survey-low-code-a
nd-no-code-platform-usage-increases/)

● By 2025, 70% of new applications developed by 
enterprises will use Low Code or No Code 
technologies (Gartner LCAP Magic Quadrant 2021)

https://www.zdnet.com/article/survey-low-code-and-no-code-platform-usage-increases/
https://www.zdnet.com/article/survey-low-code-and-no-code-platform-usage-increases/


Low Code is not new

● MS Excel

● Lotus Notes

● Ruby on Rails

● RAD (Rapid Application Development)

● CASE (Computer Aided Software Engineering)

● 4GL (4th generation Programming Languages)

● … and many other examples



What makes Low Code more 
efficient?

● Standardization
● Abstraction
● Visual Programming



Standardize and pre-define almost everything

● Database, OS, Runtime, Authorization & Security, 
Servers, Virtualization, Storage, Network as 
PaaS/SaaS in the cloud

● Software Development Life Cycle (SDLC): pipelines, 
CI/CD, testing, versioning, orchestration

● Integration with other systems via APIs (REST, 
SOAP)

● Database CRUD routines

● UI Templates

The picture is a screen shot from OutSystems Service Studio



Specify what you want to do, not how to do it

● Long history of increasing abstraction in programming (from assembler to 
modern domain-specific languages to frameworks like Spark)

The picture is a screen shot from OutSystems Service Studio



Visual Programming

● Visual Programming is not new:

○ 1949: Von Neumann and Goldstine 
apply flowcharts to describe computer 
programs

○ 1994: UML (Unified Modeling Language) 
was developed

● Other professions are using visual 
specification (architecture, construction, etc.)

The pictures are screen shots from OutSystems Service Studio



Low Code and modern
SW Development

● Micro-Service Architecture
● Test-Driven Development (TDD)
● Continuous Delivery



Micro-Service
Architecture

● Functionality is encapsulated
in modules

● Expose functionality via:
○ Server Actions

in the same environment
○ Service Actions

via REST API or
SOAP Web Services

● Use Cases for Micro-Service Architecture:
○ Complex or multiple Applications
○ Independent teams
○ Modernize core legacy systems Pictures from:

https://itnext.io/outsystems-microservices-architecture-use-case-edf522608077

https://itnext.io/outsystems-microservices-architecture-use-case-edf522608077


Test-Driven Development (TDD)

Example from OutSystems Blog "TDD Example: Creating a Loan App": https://www.outsystems.com/blog/posts/test-driven-development-example/

Module for payment calculation

API

API

API

https://www.outsystems.com/blog/posts/test-driven-development-example/


Test-Driven Development (TDD)

Module for payment calculation

API

API

API

Payment calculation Testing App

Example from OutSystems Blog "TDD Example: Creating a Loan App": https://www.outsystems.com/blog/posts/test-driven-development-example/

https://www.outsystems.com/blog/posts/test-driven-development-example/


Pipelines and Continuous Delivery

● Several environments connected by pipelines
● Automatic testing, releasing and deployment procedures
● Central system (here: LifeTime) is controlling the processes
● CI/CD orchestrators (ex. Jenkins) can control the pipelines by APIs

Picture from: https://success.outsystems.com/Documentation/How-to_Guides/DevOps/How_to_build_an_OutSystems_continuous_delivery_pipeline

https://success.outsystems.com/Documentation/How-to_Guides/DevOps/How_to_build_an_OutSystems_continuous_delivery_pipeline


Agenda
● Why Low Code?

● What is Low Code?

● Things to consider when using Low Code

● Future of Low Code

● Summary



Things to consider when you are planning to 
use Low Code

● Low Code developers available?
● Is your Low Code vendor able to maintain APIs 

over the long run (updates, tests, 
documentation, etc.)?

● Vendor Lock-In: What is when you want to 
terminate the contract with the Low Code 
vendor?

● Are you able to scale if a Low Code app becomes 
successful and/or mission-critical (in terms of 
number of users, requirements, integration)?

● Risk of becoming the next "legacy system"?
● SDLC does not scale as well with #devs and app 

complexity as high code



Things to consider when you are planning to 
use No Code

● Shadow-IT must be managed!
● Define guidelines for app and release 

management, user management, authorizations, 
security, access to APIs , backups, etc.

● On-board and train citizen developers
● Set-up No Code support organization or CoE 

(Centre of Excellence)



Agenda
● Why Low Code?

● What is Low Code?

● Things to consider when using Low Code

● Future of Low Code

● Summary



AI-Assisted Development

● Assistants trained on millions of 

anonymized code samples do code 

suggestions on the fly

● Can significantly save development time

⇒ See demo on next slide

Pictures from: https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/AI-assisted_development

https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/AI-assisted_development




Large Language Models (LLMs) are used for Coding
Example 1: GitHub Copilot

● Developed with OpenAI Codex / GPT3
● Trained on public repositories on GitHub and other publicly 

available sources
● Works in Python, JavaScript, TypeScript, Ruby, Java, Go, 

React and many other languages
● Publicly available as Technical Preview 
● Intelligent Auto-Complete

(https://copilot.github.com/)

https://copilot.github.com/


GitHub Copilot - Example:



Large Language Models (LLMs) are used for Coding
Example 2: DeepMind's AlphaCode

● Trained on GitHub and Exercises from 
Codeforces (https://codeforces.com/)

● Creates Python and C++ programs

● Achieves a rank within the top 54% of human 
participants in Codeforces competitions

(https://www.deepmind.com/blog/competitive-progra
mming-with-alphacode)

https://codeforces.com/
https://www.deepmind.com/blog/competitive-programming-with-alphacode
https://www.deepmind.com/blog/competitive-programming-with-alphacode


DeepMind's AlphaCode - Example:
AlphaCode's Output:

Pictures from: https://www.deepmind.com/blog/competitive-programming-with-alphacode

https://www.deepmind.com/blog/competitive-programming-with-alphacode


Risks and Limitations of Using Language Models for 
Coding

● Language Models for coding are far from perfect!
GitHub Copilot: 43% correct in the first try, 57% correct in 10 
attempts(*)

● The suggested code is not tested, it might not even compile or 
run or makes sense

● Suggestion based on a limited context (few hundred lines max.)

● May suggest old or deprecated functions or libraries

● Code might be insecure

● Suggested code can contain personal data (email addresses, 
phone numbers, access keys, etc.)!

(*) Source: https://copilot.github.com/

https://copilot.github.com/


Agenda
● Why Low Code?

● What is Low Code?

● Things to consider when using Low Code

● Future of Low Code

● Summary



Summary: Advantages of using Low Code

● It is not a thread - it is a tool box!

● Boost your efficiency as a developer!

● Great for rapid prototyping

● Closer cooperation with the business

● Develop once for different platforms (web, mobile)

● Democratizing Development!



Thank You!

Christoph Windheuser, OutSystems
GOTO Amsterdam
June 15, 2022 




