

Cloud-Native
Progressive Delivery

Matt Turner

GOTO, Amsterdam Netherlands | June 2022 @mt165 | mt165.co.uk

How Does Cloud-Native Enable This?

Technology Overview

12 Factor Apps

Docker

Docker

V. Strictly separate build
and run

Image

Registry

Microservices

Gateway

Adaptor

Adaptor

Adaptor

Backend

Backend

Backend

Microservices

Gateway

Adaptor

Adaptor

Adaptor

Kubernetes

Service Mesh

Metrics

Metrics

“RED”

● Rate - requests / second
● Errors - errors (%)
● Duration - latency of responses

Service Levels

● SLA - Service Level Agreement - broad statement of what’s on offer, reads
like a contract

● SLO - Service Level Objective - measurable, quantified target for availability,
performance, etc. Eg error rate %, latency ms.

● SLI - Service Level Indicator - how will we measure the service level? How
are we measuring things? Where? How are we aggregating them?

Current Deployment Practices

Continuous Integration

● These days actually means Continuous Build
● Original meaning still relevant and coming later

Deployment

● Taking a software package and running it

Continuous Deployment

● Deploying every time there’s a new build

Progressive Delivery

Release

n. Exposing a piece of software to users

— Matt

Continuous Release

● Exposing users to every new Deployment
● => Exposing them to every new Build

Deployment == Release?

Deployment ≠ Release!
We Have the Technology!

Build

Contract

● Triggered by a new commit to main
● Produces a new container image and push to the registry
● Bottom of the testing pyramid: Linting, Compilation, Unit Testing

Deploy

♻

♻

♻

♻

♻

♻

♻

♻ ♻

♻

Contract

● Triggered by a new image appearing
● Deploys to prod cluster, prod namespace
● No user traffic

♻

♻

x-test: true

♻

♻

Stage: Running in Prod, but Isolated from Users

● Does it even start?
● Available for manual testing
● Automated integration testing
● Automated end-to-end testing
● Automated non-functional testing

○ Failed if performance isn’t within SLO

Per-Service Overrides

ingress

v1

Per-Service Overrides

ingress

v1 v1 v1 v1

Per-Service Overrides

ingress

v1

v2

v1 v1 v1

v2 v2 v2

Per-Service Overrides

ingress

v1

v2

v1 v1 v1

v2 v2 v2

test.example.com

Per-Service Overrides

ingress

v1

v2

v1 v1 v1

v2 v2 v2

Per-Service Overrides

ingress

v1

v2

v1 v1 v1

v2 v2 v2

x-override=users:v2

Per-Service Overrides

ingress

v1

v2

v1 v1 v1

v2 v2 v2

x-override=users:v2

Per-Service Overrides

ingress

v1

v2

v1 v1 v1

v2 v2 v2

x-override=users:v2
x-override=avatars:v2

🚨 It’s fiddly 🚨

♻

♻

🔍

♻

🔍

♻

🔍

Stage: Running in Prod, Invisible to Users

● Gets a mirror of user traffic, but responses dropped
● What’s its Service Level? - crash rate, error rate, performance
● Compare results, if helpful

Release

♻

♻

♻

♻

♻

Demo Time!

Progressive Roll-Out

● Sends 1% of user traffic to new version
● Monitor all SLIs for a period of time
● If it’s within the SLOs, add 1% more traffic

Roll-back

● If it fails SLO at any point, all traffic sent back to the old version
● New version left running for inspection
● Alert raised

“I test in Prod”
- Charity Majors

