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How Does Cloud-Native Enable This?

Technology Overview





12 Factor Apps



Docker



Docker

V. Strictly separate build 
and run
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Kubernetes



Service Mesh



Metrics



Metrics

“RED”

● Rate - requests / second
● Errors - errors (%)
● Duration - latency of responses



Service Levels

● SLA - Service Level Agreement - broad statement of what’s on offer, reads 
like a contract

● SLO - Service Level Objective - measurable, quantified target for availability, 
performance, etc. Eg error rate %, latency ms.

● SLI - Service Level Indicator - how will we measure the service level? How 
are we measuring things? Where? How are we aggregating them?



Current Deployment Practices



Continuous Integration

● These days actually means Continuous Build
● Original meaning still relevant and coming later



Deployment

● Taking a software package and running it



Continuous Deployment

● Deploying every time there’s a new build



Progressive Delivery



Release

n. Exposing a piece of software to users

— Matt



Continuous Release

● Exposing users to every new Deployment
● => Exposing them to every new Build



Deployment == Release?



Deployment ≠ Release!
We Have the Technology!



Build







Contract

● Triggered by a new commit to main
● Produces a new container image and push to the registry
● Bottom of the testing pyramid: Linting, Compilation, Unit Testing



Deploy
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Contract

● Triggered by a new image appearing
● Deploys to prod cluster, prod namespace
● No user traffic
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x-test: true
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Stage: Running in Prod, but Isolated from Users

● Does it even start?
● Available for manual testing
● Automated integration testing
● Automated end-to-end testing
● Automated non-functional testing

○ Failed if performance isn’t within SLO



Per-Service Overrides
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Per-Service Overrides
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🚨 It’s fiddly 🚨
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Stage: Running in Prod, Invisible to Users

● Gets a mirror of user traffic, but responses dropped
● What’s its Service Level? - crash rate, error rate, performance
● Compare results, if helpful



Release
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Demo Time!







Progressive Roll-Out

● Sends 1% of user traffic to new version
● Monitor all SLIs for a period of time
● If it’s within the SLOs, add 1% more traffic

Roll-back

● If it fails SLO at any point, all traffic sent back to the old version
● New version left running for inspection
● Alert raised



“I test in Prod”
- Charity Majors




