
@allardbz

Event Driven Microservices
The sense, the non-sense and a way forward



@allardbz

Once upon a time…



@allardbz

“Universal ‘BBC’ architecture”

Box Box Cylinder

Source: Ted Neward



@allardbz

Source: http://www.sabisabi.com/images/DungBeetle-on-dung.JPG



@allardbz

Microservices 
to the rescue!



@allardbz

Why microservices?



@allardbz

Agility

(Team) Scalabilty



@allardbz

Agility Scalability
Additional

Complexity



@allardbz

“Universal Microservices architecture”



@allardbz

Noun Driven Design

Noun? → Service!



@allardbz

Noun Driven Design

OrderService



@allardbz

Noun Driven Design

CustomerService



@allardbz

Noun Driven Design

ProductService



@allardbz

Noun Driven Design

InventoryService



@allardbz

Number of deployment units

M
o
d
u
la

ri
ty

“Evil anti-modularity forces”



@allardbz



@allardbz

Want to build 
microservices?

Learn to build a decent 
monolith first!



@allardbz

$



@allardbz

Location transparency

A Component should not be aware, nor make any 

assumptions, of the location of Components it 

interacts with

A component should neither be aware of nor make any 

assumptions about the location of components it interacts with.

Location transparency starts with good API design 
(but doesn’t end there)



@allardbz

Events



@allardbz

Service C

Service B

Service D

Service A



@allardbz

Service A Service C

Service B

Service D

Event



@allardbz

“Event” all the things!



@allardbz

Maslow’s Hammer



@allardbz

Birmingham Screwdriver



@allardbz

“Maslow Syndrome”



@allardbz

Event-carried State Transfer

Event Notification

Event Sourcing



@allardbz

‘Event-Driven’ Microservices

Need to know

ordered items
Order service

OrderCreated →

ItemAdded →

ItemRemoved →

OrderConfirmed →



@allardbz

Or worse…

Shipping 

Service
Order service

OrderCreated →

 InventoryConfirmed

ReadyForShipping →

 OrderShipped

Payment service

OrderPaid →

 ReadyForPayment



@allardbz

Microservices Messaging
Commands Events Queries

Route to single handler
Use consistent hashing

Provides confirmation/result

Distribute to all logical handlers
Consumers express ordering req’s

No results

Route with load balancing
Sometimes scatter/gather

Provides result

"Event" and “Message" is not the same thing



@allardbz

OrderConfirmed →

‘Event-Driven’ Microservices

Need to know

ordered items
Order service

ItemAdded →

ItemRemoved →

OrderConfirmed →

OrderCreated →

 GetOrderDetails

OrderDetails →



@allardbz

Event Sourcing:

the truth,
the whole truth,

nothing but the truth



@allardbz

State storage Event Sourcing

Event Sourcing

id: 123

items

1x Deluxe Chair - € 399

status: return shipment rcvd

OrderCreated (id: 123)

ItemAdded (2x Deluxe Chair, €399)

ItemRemoved (1x Deluxe Chair, €399)

OrderConfirmed

OrderShipped

OrderCancelledByUser

ReturnShipmentReceived



@allardbz

Event Sourcing

Some smart 

analytics
Order service

OrderCreated →

ItemAdded →

ItemRemoved →

OrderConfirmed →



@allardbz

Business reasons Technical reasons

Why use event sourcing?

• Auditing / compliance / 
transparency

• Data mining, analytics:
value from data

• Guaranteed completeness of raised
events

• Single source of truth

• Concurrency / conflict resolution

• Facilitates debugging

• Replay into new read models (CQRS)

• Easily capture intent

• Deal with complexity in models



@allardbz

The challenges
Dealing with increasing storage size

Complex to implement

“Event Thinking”



@allardbz

“Event” all the things!
Source



@allardbz

Event store in context

Application Event store

Past events

New events

• Works well for processing changes on single 
entities/aggregates (Commands)

• Does not work well for generic queries



@allardbz

CQRS
Command-Query Responsibility Segregation

Command Handler Event store

Past events

New events

Projection databaseQuery Handler

New events

Projection logic

Updates
Selection 
criteria

Data



@allardbz

“CQRS” all the things?



@allardbz

Service

Service

Service

Service
Service

Service



@allardbz

Service

Service

Service

Service
Service

Service

Service

Service

Service

Service
Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service Service

Service

Service

Service

Service
Service

Service



@allardbz

Communication = Contract



@allardbz

Service

Service Service Service Service



@allardbz

Bounded context
Explicitly define the context within which a model applies. 
Explicitly set boundaries in terms of team organization, usage 
within specific parts of the application, and physical 
manifestations such as code bases and database schemas. Keep 
the model strictly consistent within these bounds, but don’t be 
distracted or confused by issues outside.



@allardbz

Service Service Service

Service

Service Service Service Service



@allardbz

Service

Service Service Service

Anti-corruption layer

Service



@allardbz



@allardbz

In closing….



@allardbz

Consider commands
and queries

as much as events



@allardbz

Sharing is caring



@allardbz

Beware coupling 
across 

bounded contexts



@allardbz

“Microservice Journey”



@allardbz

Monolith first



@allardbz

wax-on , wax-off!


