Event Driven Microservices

The sense, the non-sense and a way forward
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Once upon a time...
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“Universal ‘BBC’ architecture”
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e: Ted Neward
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Microservices
to the rescue!
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Why microservices?
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Aqility
(Team) Scalabilty




Additional

Complexity
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“Universal Microservices architecture”
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Noun Driven Design

Noun? = Service!
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Noun Driven Design

OrderService
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Noun Driven Design

CustomerService
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Noun Driven Design

ProductService




Noun Driven Design

InventoryService
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“Evil anti-modularity forces”

Modularity

v

Number of deployment units
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Want to build
microservices?

L.earn to build a decent
monolith first!
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Location transparency
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A component should neither be aware of nor make any
assumptions about the location of components it interacts with.

Location transparency starts with good API design
(but doesn’t end there)
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Events
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Service B

—_— Service A > Service C

Service D
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Service A el — Service C
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"Event” all the things!




Maslow's Hammer

Axon|Q




Birmingham Screwdriver
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"Maslow Syndrome”
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Event Notification
Event-carried State Transfer

Event Sourcing

Axon|Q




‘Event-Driven’ Microservices

OrderCreated -

ltemAdded =

ltemRemoved -

OrderConfirmed -

Need to know
ordered items

Order service ‘
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Or worse...

< ReadyForPayment

OrderPaid =

Payment service
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Order service

OrderCreated -

< InventoryConfirmed

ReadyForShipping =

< OrderShipped

Shipping
Service
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Microservices Messaging

Commands Events Queries

A
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Route to single handler Distribute to all logical handlers Route with load balancing
Use consistent hashing Consumers express orderingreq’s Sometimes scatter/gather
Provides confirmation/result No results Provides result

"Event" and “Message" is not the same thing
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‘Event-Driven’ Microservices

OrderCreated -

ltemAdded =

< GetOrderDetalls

OrderDetails =

Need to know
ordered items

Order service ‘
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Event Sourcing:

the truth,
the whole truth,
nothing but the truth
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Event Sourcing

State storage
id: 123
items
1x Deluxe Chair - € 399

status: return shipment rcvd
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Event Sourcing

OrderCreated (id: 123)

ltemAdded (2x Deluxe Chair, €399)
ltemRemoved (1x Deluxe Chair, €399)
OrderConfirmed

OrderShipped
OrderCancelledByUser
ReturnShipmentReceived



Event Sourcing
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Order service

OrderCreated -

ltemAdded =

ltemRemoved -

OrderConfirmed -

Some smart
analytics




Why use event sourcing?

Business reasons Technical reasons
 Auditing / compliance / * Guaranteed completeness of raised
events
transparency

* Single source of truth
« Concurrency / conflict resolution
- Data mining, analytics: * Facilitates debugging
value from data  Replay into new read models (CQRS)
 Easily capture intent
* Deal with complexity in models
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The challenges

Deal e o :
Compledtsmplement

“Event Thinking”
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Souree |
"Event” all the things!




Event store in context

Past events

—
Application |

New events

 Works well for processing changes on single
entities/aggregates (Commands)
* Does notwork well for generic queries
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CQRS

Command-Query Responsibility Segregation

Past events
——

Command Handler

—
New events

l New events

Projection logic

l Updates
Selection

criteria

>

Query Handler

C——

Data
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“‘CQRS” all the things?




Service Service

Service
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Service Service
Service

Service

Sel‘Vice Service

Service Service SEIvice

Service

Service : Service
| Service —

Service : . Service
Service CAniinn

Service , :
Service < Service

Service

Service

Service Service
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Communication = Contract

O
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Service

|
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Bounded context

Explicitly define the context within which a model applies.
Explicitly set boundaries in terms of team organization, usage
within specific parts of the application, and physical
manifestations such as code bases and database schemas. Keep
the model strictly consistent within these bounds, but don't be
distracted or confused by issues outside.
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Service

Service Service Service Service
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Service

Anti-corruption layer
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Service Service Service
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In closing....
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Consider commands
and queries
as much as eventis
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Sharing 1s caring
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Beware coupling
aCIOSS
bounded contexts
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"Microservice Journey”
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Monolith first




wax-on , wax-off!
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