
@allardbz

Event Driven Microservices
The sense, the non-sense and a way forward
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Once upon a time…
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“Universal ‘BBC’ architecture”

Box Box Cylinder

Source: Ted Neward
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Source: http://www.sabisabi.com/images/DungBeetle-on-dung.JPG
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Microservices 
to the rescue!
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Why microservices?
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Agility

(Team) Scalabilty
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Agility Scalability
Additional

Complexity
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“Universal Microservices architecture”
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Noun Driven Design

Noun? → Service!
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Noun Driven Design

OrderService
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Noun Driven Design

CustomerService
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Noun Driven Design

ProductService
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Noun Driven Design

InventoryService
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Number of deployment units

M
o
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ty

“Evil anti-modularity forces”
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Want to build 
microservices?

Learn to build a decent 
monolith first!
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$
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Location transparency

A Component should not be aware, nor make any 

assumptions, of the location of Components it 

interacts with

A component should neither be aware of nor make any 

assumptions about the location of components it interacts with.

Location transparency starts with good API design 
(but doesn’t end there)
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Events
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Service C

Service B

Service D

Service A
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Service A Service C

Service B

Service D

Event
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“Event” all the things!
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Maslow’s Hammer
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Birmingham Screwdriver
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“Maslow Syndrome”
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Event-carried State Transfer

Event Notification

Event Sourcing
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‘Event-Driven’ Microservices

Need to know

ordered items
Order service

OrderCreated →

ItemAdded →

ItemRemoved →

OrderConfirmed →
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Or worse…

Shipping 

Service
Order service

OrderCreated →

 InventoryConfirmed

ReadyForShipping →

 OrderShipped

Payment service

OrderPaid →

 ReadyForPayment
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Microservices Messaging
Commands Events Queries

Route to single handler
Use consistent hashing

Provides confirmation/result

Distribute to all logical handlers
Consumers express ordering req’s

No results

Route with load balancing
Sometimes scatter/gather

Provides result

"Event" and “Message" is not the same thing
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OrderConfirmed →

‘Event-Driven’ Microservices

Need to know

ordered items
Order service

ItemAdded →

ItemRemoved →

OrderConfirmed →

OrderCreated →

 GetOrderDetails

OrderDetails →
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Event Sourcing:

the truth,
the whole truth,

nothing but the truth
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State storage Event Sourcing

Event Sourcing

id: 123

items

1x Deluxe Chair - € 399

status: return shipment rcvd

OrderCreated (id: 123)

ItemAdded (2x Deluxe Chair, €399)

ItemRemoved (1x Deluxe Chair, €399)

OrderConfirmed

OrderShipped

OrderCancelledByUser

ReturnShipmentReceived
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Event Sourcing

Some smart 

analytics
Order service

OrderCreated →

ItemAdded →

ItemRemoved →

OrderConfirmed →
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Business reasons Technical reasons

Why use event sourcing?

• Auditing / compliance / 
transparency

• Data mining, analytics:
value from data

• Guaranteed completeness of raised
events

• Single source of truth

• Concurrency / conflict resolution

• Facilitates debugging

• Replay into new read models (CQRS)

• Easily capture intent

• Deal with complexity in models
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The challenges
Dealing with increasing storage size

Complex to implement

“Event Thinking”
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“Event” all the things!
Source



@allardbz

Event store in context

Application Event store

Past events

New events

• Works well for processing changes on single 
entities/aggregates (Commands)

• Does not work well for generic queries
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CQRS
Command-Query Responsibility Segregation

Command Handler Event store

Past events

New events

Projection databaseQuery Handler

New events

Projection logic

Updates
Selection 
criteria

Data
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“CQRS” all the things?
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Service

Service

Service

Service
Service

Service
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Service

Service

Service

Service
Service
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Service

Service

Service

Service
Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service

Service Service

Service

Service

Service

Service
Service

Service



@allardbz

Communication = Contract
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Service

Service Service Service Service
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Bounded context
Explicitly define the context within which a model applies. 
Explicitly set boundaries in terms of team organization, usage 
within specific parts of the application, and physical 
manifestations such as code bases and database schemas. Keep 
the model strictly consistent within these bounds, but don’t be 
distracted or confused by issues outside.
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Service Service Service

Service

Service Service Service Service
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Service

Service Service Service

Anti-corruption layer

Service



@allardbz



@allardbz

In closing….
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Consider commands
and queries

as much as events
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Sharing is caring
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Beware coupling 
across 

bounded contexts
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“Microservice Journey”
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Monolith first
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wax-on , wax-off!


