Event Driven Microservices

The sense, the non-sense and a way forward

AxonlQ

Once upon a time...

Axon|Q

“Universal ‘BBC’ architecture”

».».»

e: Ted Neward

AxonlQ o @allardbz

Axon|Q

B 2

Source: http://mww. sablsabl comllmages/DungBeetIe on- dung JPG

2 V\ S

Microservices
to the rescue!

Axon|Q

Why microservices?

Axon|Q

Aqility
(Team) Scalabilty

Additional

Complexity

Axon|Q

“Universal Microservices architecture”

"l

Yl S

"L

Hrlh S

AxonlQ @allardbz

Noun Driven Design

Noun? = Service!

AxonlQ

Noun Driven Design

OrderService

AxonlQ

Noun Driven Design

CustomerService

Axon|Q

Noun Driven Design

ProductService

Noun Driven Design

InventoryService

Axon|Q

“Evil anti-modularity forces”

Modularity

v

Number of deployment units

AxonlQ @allardbz

Want to build
microservices?

L.earn to build a decent
monolith first!

Axon|Q

| -
=
-

seee

AxonlQ

Location transparency

p ’f_'ﬁ.- ,f_'&-ﬁ

= S = o

A component should neither be aware of nor make any
assumptions about the location of components it interacts with.

Location transparency starts with good API design
(but doesn’t end there)

AxonlQ

Events

Axon|Q

Service B

—_— Service A > Service C

Service D

AxonlQ

Service A el — Service C

AxonlQ

"Event” all the things!

Maslow's Hammer

Axon|Q

Birmingham Screwdriver

Axon|Q

"Maslow Syndrome”

Axon|Q

Event Notification
Event-carried State Transfer

Event Sourcing

Axon|Q

‘Event-Driven’ Microservices

OrderCreated -

ltemAdded =

ltemRemoved -

OrderConfirmed -

Need to know
ordered items

Order service ‘

AxonlQ

Or worse...

< ReadyForPayment

OrderPaid =

Payment service

AxonlQ

Order service

OrderCreated -

< InventoryConfirmed

ReadyForShipping =

< OrderShipped

Shipping
Service

@allardbz

Microservices Messaging

Commands Events Queries

A

Ny N\

Route to single handler Distribute to all logical handlers Route with load balancing
Use consistent hashing Consumers express orderingreq’s Sometimes scatter/gather
Provides confirmation/result No results Provides result

"Event" and “Message" is not the same thing

AxonlQ

‘Event-Driven’ Microservices

OrderCreated -

ltemAdded =

< GetOrderDetalls

OrderDetails =

Need to know
ordered items

Order service ‘

AxonlQ

Event Sourcing:

the truth,
the whole truth,
nothing but the truth

AxonlQ

Event Sourcing

State storage
id: 123
items
1x Deluxe Chair - € 399

status: return shipment rcvd

Axon|Q

Event Sourcing

OrderCreated (id: 123)

ltemAdded (2x Deluxe Chair, €399)
ltemRemoved (1x Deluxe Chair, €399)
OrderConfirmed

OrderShipped
OrderCancelledByUser
ReturnShipmentReceived

Event Sourcing

AxonlQ

Order service

OrderCreated -

ltemAdded =

ltemRemoved -

OrderConfirmed -

Some smart
analytics

Why use event sourcing?

Business reasons Technical reasons
 Auditing / compliance / * Guaranteed completeness of raised
events
transparency

* Single source of truth
« Concurrency / conflict resolution
- Data mining, analytics: * Facilitates debugging
value from data Replay into new read models (CQRS)
 Easily capture intent
* Deal with complexity in models

AxonlQ

The challenges

Deal e o :
Compledtsmplement

“Event Thinking”

AxonlQ

Souree |
"Event” all the things!

Event store in context

Past events

—
Application |

New events

 Works well for processing changes on single
entities/aggregates (Commands)
* Does notwork well for generic queries

AxonlQ

CQRS

Command-Query Responsibility Segregation

Past events
——

Command Handler

—
New events

l New events

Projection logic

l Updates
Selection

criteria

>

Query Handler

C——

Data

AxonlQ @allardbz

“‘CQRS” all the things?

Service Service

Service

AxonlQ

Service Service
Service

Service

Sel‘Vice Service

Service Service SEIvice

Service

Service : Service
| Service —

Service : . Service
Service CAniinn

Service , :
Service < Service

Service

Service

Service Service

AxonlQ

Communication = Contract

O

AxonlQ @allardbz

Service

|

AxonlQ

Bounded context

Explicitly define the context within which a model applies.
Explicitly set boundaries in terms of team organization, usage
within specific parts of the application, and physical
manifestations such as code bases and database schemas. Keep
the model strictly consistent within these bounds, but don't be
distracted or confused by issues outside.

Axon|Q

Service

Service Service Service Service

AxonlQ

Service

Anti-corruption layer

:
R
| | l

Service Service Service

AxonlQ

Service

In closing....

Axon|Q

Consider commands
and queries
as much as eventis

Axon|Q

Sharing 1s caring

Axon|Q

Beware coupling
aCIOSS
bounded contexts

Axon|Q

"Microservice Journey”

Axon|Q

Monolith first

wax-on , wax-off!

Axon|Q

