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The Large Hadron Collider

Collides protons to convert mass into 
energy into mass

E = mc2

E = mc2



A Giant Microscope?
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Uncertainty Principle

Protons move at 0.999999990 times the speed of light

momentum

distance



From atom to quark
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The Standard Model

Quarks

Leptons
Forces

http://particlefever.com/



Particle Colliders
also known as:  
atom smashers

Luminosity: measure of the 
number of collisions 
i.e. how much data
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The LHC 
Experiments

43

Large Ion Collider Experiment (ALICE) [8], which will study the properties of lead-lead collisions,

and the Large Hadron Collider Beauty Experiment (LHCb) [29], an experiment designed to study

physics using bottom quarks, are located at Point 2 and Point 8, respectively. Two of the remaining

points contain equipment used for beam cleaning (Points 3 and 7); Point 4 contains radio-frequency

cavities; and Point 6 is the location of the beam dump.
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Figure 4.1: Schematic diagram of the Large Hadron Collider (LHC) [79]. The eight possible proton
crossing points are labelled as Points 1-8. The buildings for the four large LHC experiments: ATLAS
(Point 1), ALICE (Point 2), CMS (Point 5) and LHCb (Point 8) are coloured.

Each of the two beams, which travel in opposite directions around the ring, contain protons.

Therefore the two beams need independent magnet systems, because the particles in the beams

have the same charge3. The 3.7 m diameter of curved sections of the tunnel is not large enough to

contain two completely separate rings, therefore a twin-bore magnet system was designed in which
3This is in contrast to the Tevatron collider at Fermilab, which collides protons with antiprotons. As the par-

ticles have opposite charge and move in the opposite direction, both beams require a magnetic field with the same
orientation. A di�erent choice was made for the LHC to avoid the technical challenges in producing and storing
antiprotons.



ATLAS CMS

Weight 
(tons) Length (m) Height (m)

ATLAS 7000 45 21

CMS 12500 25 15
lego detector

https://build-your-own-particle-detector.org/models/atlas-lego-model/


ATLAS CMS

Weight 
(tons) Length (m) Height (m)

ATLAS 7000 45 21

CMS 12500 25 15

ATLAS Cavern 

#CMS#is#a#large#compact#fast5electronics#detector#(80#M#channels,#40#MHz),#
#embedded#in#a#4#T#magne?c#field,#precise#3D#event#reconstruc?on.#

#

#High5efficiency#(pT,#MET,#event#mul?plicity)#low5latency#trigger#system############
#brings#the#20#MHz#collision#rate#down#to#800#Hz,#almost#insensi?ve#to#PU.#

#

#Aker#3#years#of#opera?on,#efficiency#of#all#subdetectors#above#96%.#

8"





From detector to physics

?

Volume 712, Issue 3, 6 June 2012 ISSN 0370-2693

http://www.elsevier.com/locate/physlet b

PHYSICS LETTERS B

• Data Challenge:

• 40MHz collision rate

• ~6M seconds data-taking per year

• ~1MB RAW event size

Zetabytes per year
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Throw away what you don’t need
• Complex trigger system to select 

interesting events

• Level 1 looks at local information to 

select potentially interesting events

• Keep 0.2% of events

• Decision within 2ms


• High Level Trigger does incremental 
reconstruction to identify genuinely 
interesting events

• Keep 1% of L1 events

• Decision within 200ms



Data Processing

• ATLAS records ~1010 RAW 
events a year 


• ~15s per event to reconstruct 
the physical particles 

• ~5000 CPU years 

• Can’t do this very many times



LHC Computing
• Use 1M CPU cores every hour of every day


• Store 1000PB of data


• Make 100PB of data transfers per year



Why?



We have an 
extraordinarily 

successful description 
of nature:


The Standard Model



But … questions remained
•What is the origin of particle masses ?


•What is dark matter ?


•Why is there so much more matter than antimatter in the 
universe?


•What happened in the first few moments of the universe ?


•Are there other forces ? The LHC is looking for 
answers to all these 

questions
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The Standard Model equations 
would work perfectly if all particles 
were massless

… but experiments told us otherwise



The Higgs Boson
a mathematical trick

Early universe Today

First predicted almost 60 years ago!



Seeing particles, e.g. the Higgs
Highly unstable elementary particle!


Lifetime is only 1.6×10−22 s

H

γ γ

See Higgs by studying its remnants:

the particles it decay to

ATLAS Cavern 
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Example: Higgs 
decay to two 

photons





Higgs to two photons (H→γγ)

4 July 2012



Higgs to 4 leptons (H→ZZ*→llll)

4 July 2012
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15 SLAC @ 50, Aug 24, 2012 Andreas Hoecker   —   The Higgs Boson and Beyond 

4th of July, 2012 — Higgs-day at CERN 

Duration of projects /planning stability: 
First LHC workshop 1984 ! 

4 July 2012: Higgs (In)dependence Day



October 8, 2013… 

?
Crowning of half a century of theoretical 

developments and Higgs Hunt ? 

Nobel Prize in Physics 
2013 

to  
Peter Higgs 

François Englert



More questions to be solved
•What is the origin of particle masses ?


•What is dark matter ?


•Why is there so much more matter than antimatter in the 
universe?


•What happened in the first few moments of the universe ?


•Are there other forces ?



Solution: More data

today

Only have 5% of the total data expected from the LHC



Major accelerator upgrade:

The High-Luminosity LHC 

(HL-LHC)

Great for physics … but a challenge for computing



HL-LHC Events
First data HL-LHC

Combinatoric explosion that naively scales as n!



Google	
searches
98	PB

LHC	Science	
data

~200	PB
SKA	Phase	1	–

2023
~300	PB/year	
science	data

HL-LHC	– 2026
~600	PB	Raw	data

HL-LHC	– 2026
~1	EB	Physics	data

SKA	Phase	2	– mid-2020’s
~1	EB	science	data

LHC	– 2016
50	PB	raw	data

Facebook	
uploads
180	PB

Google
Internet	archive
~15	EB

Yearly	data	volumes

10 Billion of these 



Technology Challenges

https://github.com/karlrupp/microprocessor-trend-data


Shifting landscape for 
end-to-end computing

5

The Good Old Days

The Brave 
New World

Courtesy Graeme Stewart, CERN

Quantum 
Computing

?



The HL-LHC Computing Problem

Year
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Can quantum computing play a 
role?



Initial ideas of quantum computing
“Let the computer itself be built of 

quantum mechanical elements which obey 
quantum mechanical laws.”

RICHARD FEYNMAN (1982)
Copyright © D-Wave Systems Inc. 4

April 1983 – Richard Feynman’s Talk at Los Alamos

Title: Los Alamos Experience
Author: Phyllis K Fisher

Page 247



Almost 40 years later

Copyright © D-Wave Systems Inc. 13

D-Wave Container –Faraday Cage - No RF Interference

IBM 20Q 
Tokyo 
chip

D Wave 
2000Q



Simulating 
Correlations

Currently simulate events assuming the evolution of each particle is independent



Entanglement
• Particles obey quantum mechanics


• Correlations exist between them


• Idea: exploit entanglement between qubits on a quantum computer to 
improve the description of the parton shower

arXiv:1901.08148
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with a classical MCMC implementation. The quantum
circuit is implemented with Qiskit [14]. To compute the
distributions of various observables, the algorithm is run
many times and each measured outcome (leaf and final
spin) is recorded. With these ‘events’, it is possible to
then compute the distribution of any observable. For il-
lustration, two observables are considered: the number
of times the system moved left and the first time the sys-
tem moved left. As in the calculation from Sec. III, the
state always starts as spin down.

A classical MCMC is constructed by sampling from
the squared amplitudes at each step. This classical sim-
ulation does not contain any interference e↵ects and is
therefore expected to produce the incorrect probability
distributions for a generic observable when ✓F 6= 0.

We run our simulations with N = 4, with cos2(✓") for
each step taken as (0.2, 0.3, 0.4, 0.5) and (0.4, 0.5, 0.6, 0.7)
for cos2(✓#). Figure 9 shows results for the number of left
branches, while Fig. 10 shows results for the step the first
left branch occurred. In both cases, the histograms in the
left plot show the probability distributions when ✓F = 0
(both for the quantum algorithm and a classical MCMC),
while the right plot shows how the expectation value of
the observables depends on cos2 ✓F . As expected, the ex-
pectation values are the same for the MCMC and for the
quantum algorithm when ✓F = 0, but di↵er as interfer-
ence e↵ects are introduced. We have verified that the re-
sults from the quantum algorithm agree with the analyt-
ical calculation of the full probability distribution using
the exponentially scaling method introduced in Sec. II.
The di↵erence between the MCMC and the quantum al-
gorithm also goes to zero as cos ✓F ! 0, in which case
the spin flips at each step in a deterministic way and thus
there are no interference e↵ects.

VI. CONCLUSIONS

In this work, we have introduced a system similar
to the quantum walk which smoothly interpolates be-

FIG. 9. Left: the probability mass function over the number
of up branches. Right: the expected number of up branches as
a function of the time-independent spin transition probabil-
ity cos2(✓F ). Error bars correspond to Poission uncertainties
from the finite simulation.

FIG. 10. Left: the probability mass function over the step
for the first up branch. A value of �1 indicates that the
system never moved to the left. Right: the expected first
step for an up branch as a function of the time-independent
spin transition probability cos2(✓F ). The error bars are the
same as in Fig. 9.

tween a binary tree, amenable to classical MCMC ap-
proaches, and interfering trees with non-trivial quantum
phenomenology. When non-trivial interference e↵ects are

https://arxiv.org/abs/1901.08148
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HL-LHC: μ= 140-200

Track reconstruction 
is expected to have 

the largest CPU 
burden at the HL-

LHC 



Different Algorithms: Associative Memory
Quantum associative memory has 
potential for exponential storage 

capacity

arXiv:1902.00498

https://arxiv.org/abs/1902.00498


QuAM Demonstration on IBM-Q

QuAM storage circuit generator
Ex.: complete 

circuit for retrieving 
one 2-bit pattern

QuAM retrieval circuit generator
Ex.: complete 

circuit for retrieving 
one 2-bit pattern

arXiv:1902.00498

https://arxiv.org/abs/1902.00498


Different Algorithms: Quantum Annealing

• Reformulate track reconstruction as an 
energy minimisation problem 


• Solve using the D-Wave quantum annealer


• Solution time not expected to scale with 
number of tracks

arXiv:1902.08324

https://arxiv.org/abs/1902.08324


needs 
improvement

excellent

arXiv:1902.08324

https://arxiv.org/abs/1902.08324


Finding the Higgs Boson



Finding the Higgs Boson
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where si =   ±  1 is the ith Ising spin variable, Jij =   Cij/4 is the coupling 
between spins i and j, and λ= − + ∑h C Ci i j ij

1
2

 is the local field on 
spin i. The problem that quantum or simulated annealing attempt to 
solve is minimizing H and returning the minimizing, ground-state spin 
configuration s{ }i i

g . The strong classifier is then constructed as

∑= ∈ −x xR s c( ) ( ) [ 1, 1]
i

i i
g

for each new event x that we wish to classify6. We introduce an addi-
tional layer into our study by also constructing strong classifiers from 
excited-state spin configurations.

As benchmarks for traditional machine learning methods, we train a 
deep neural network (DNN) using Keras9 with the Theano backend19, 
and an ensemble of boosted decision trees using XGBoost (XGB)10, 
using  optimized choices for training hyperparameters (details of which 
can be found in Supplementary Information).

We compare the ground-state configurations for λ ∈  {0.01, 0.05, 0.1,  
0.2, 0.4, 0.8}. A larger λ implies an increased penalty against including 
additional variables, and so we expect the variables included at λ =   0.8 
to be determining the performance of the classifiers. Table 3 presents 
the relative strength of the variables in determining the performance 
of the classifier by showing how often variables are included in the 
ground-state configuration of the full 36-variable problem derived from 
20 different training sets with 20,000 training events each, as a function 
of the penalty term λ. We find that two of the original kinematic 
 variables, pT

1  and | ηγγ| , are never included. The number of classifiers 
included in the ground state of the corresponding Hamiltonian of all 
20 training samples is 16 out of 36 for λ ≤   0.05 and the following three 
for λ =   0.8: (i) / γγp mT

2 , (ii) ∆ γγ −R p( )T
1 and (iii) / γγp pT

2
T . These three 

classifiers have the greatest effect on the performance of the network, 
but would have been difficult to guess a priori in their composite form. 
The physical reason for why these variables are important for the clas-
sifier can be gleaned by considering the kinematics of the system. The 
key difference between an event in which a Higgs boson decays to two 
photons and another process that produces two photons in its final state 
is the production of the heavy particle in the event. A heavy particle 
will require considerably more energy to boost perpendicular to the 
beamline and hence we would expect real Higgs events to have a char-
acteristically lower γγpT  than do background events. Because the system 
with the Higgs boson has less transverse boost, we would expect  
the two photons to have similar pT spectra. Consequently, the second 
most energetic photon will typically be higher than in events without 
the heavy process. The pT of the first photon is largely determined by 
the overall energy that is available in the collision, which is also  

set by mγγ; hence / γγp mT
1  is largely stochastic and provides little 

discrimination.
We estimate the receiver operating characteristic (ROC) curves on 

the training set and construct a final output classifier such that for 

Table 3 | Variable inclusion in the ground states of instances of the Ising problem
λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8 λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8

1 0 0 0 0 0 0 0 0 19 20 20 20 20 20 18 0 0
2 20 20 20 20 20 20 20 20 20 0 0 0 0 0 0 0 0
3 20 20 20 20 20 20 0 0 21 0 0 0 0 0 0 0 0
4 20 20 20 20 20 20 2 0 22 19 19 19 19 1 0 0 0
5 19 19 19 19 19 19 19 0 23 0 0 0 0 0 0 0 0
6 20 20 20 20 20 20 20 0 24 20 20 20 20 20 20 7 0
7 20 20 20 20 20 20 20 9 25 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 26 3 2 1 0 0 0 0 0
9 5 4 4 1 0 0 0 0 27 0 0 0 0 0 0 0 0
10 20 20 20 20 20 20 20 18 28 20 20 20 20 20 20 20 20
11 20 20 20 20 20 14 17 0 29 19 19 19 16 1 0 0 0
12 20 20 20 20 20 20 20 0 30 7 6 4 1 0 0 0 0
13 20 20 20 20 20 20 20 20 31 0 0 0 0 0 0 0 0
14 19 19 19 19 19 12 0 0 32 15 15 15 11 5 0 0 0
15 20 20 20 20 20 20 20 2 33 0 0 0 0 0 0 0 0
16 17 17 16 10 6 4 1 0 34 19 19 19 19 16 0 0 0
17 20 20 20 20 14 1 0 0 35 20 20 20 20 20 20 20 19
18 20 20 20 17 2 0 0 0 36 20 20 20 20 20 20 3 0

The variables are listed by number (see Table 2). We show how many out of 20 training sets had the given variable turned on in the ground-state configuration. Of the 36 variables, 3 were included for 
all values of the penalty term λ and for all of the training sets, pT

2, / ∆ γγRp1 ( )T
 and / γγp pT

2
T

; the variables / −p p p( )T
2

T
1

T
2  and η+ /∆p p( )T

1
T
2  were present in almost all; and 7 were never included, among which 

are the original kinematic variables pT
1 and ηγγ. 
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Figure 3 | Receiver operating characteristic (ROC) curves for the 
annealer-trained networks with f = 0.05, the DNN and XGB.  
a–d, Results shown are for the 36-variable networks at λ =   0.05, trained 
on 100 (a and b) or 20,000 (c and d) events. The ROC curve illustrates 
the diagnostic ability of a binary classifier system as its discrimination 
threshold is varied, and is created by plotting the background rejection 
against the signal efficiency at various threshold settings. The short-
dashed black line indicates no discrimination. Solid lines correspond to 
quantum (QA; green) or simulated (SA; blue) annealing, and dotted lines 
to the DNN (red) or XGB (cyan). Error bars are defined by the variation 
over the training sets and statistical error; 1σ error bars for quantum 
annealing and the DNN are shown as light blue and pale yellow shading, 
respectively, in a and c. The 1σ error bars for simulated annealing and XGB 
are included in b and d, but are too small to be visible owing to the larger 
number of events. For 100 events the annealer-trained networks have a 
larger AUROC, as shown directly in Fig. 4. The situation is reversed for 
20,000 training events.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Solving a Higgs optimization problem with quantum 
annealing for machine learning
Alex Mott1†*, Joshua Job2,3*, Jean-Roch Vlimant1, Daniel Lidar3,4 & Maria Spiropulu1

The discovery of Higgs-boson decays in a background of standard-
model processes was assisted by machine learning methods1,2. The 
classifiers used to separate signals such as these from background 
are trained using highly unerring but not completely perfect 
simulations of the physical processes involved, often resulting in 
incorrect labelling of background processes or signals (label noise) 
and systematic errors. Here we use quantum3–6 and classical7,8 
annealing (probabilistic techniques for approximating the global 
maximum or minimum of a given function) to solve a Higgs-
signal-versus-background machine learning optimization problem, 
mapped to a problem of finding the ground state of a corresponding 
Ising spin model. We build a set of weak classifiers based on the 
kinematic observables of the Higgs decay photons, which we then 
use to construct a strong classifier. This strong classifier is highly 
resilient against overtraining and against errors in the correlations 
of the physical observables in the training data. We show that the 
resulting quantum and classical annealing-based classifier systems 
perform comparably to the state-of-the-art machine learning 
methods that are currently used in particle physics9,10. However, in 
contrast to these methods, the annealing-based classifiers are simple 
functions of directly interpretable experimental parameters with 
clear physical meaning. The annealer-trained classifiers use the 
excited states in the vicinity of the ground state and demonstrate 
some advantage over traditional machine learning methods for 
small training datasets. Given the relative simplicity of the algorithm 
and its robustness to error, this technique may find application 
in other areas of experimental particle physics, such as real-time 
decision making in event-selection problems and classification in 
neutrino physics.

The discovery of the Higgs boson at the Large Hadron Collider 
(LHC)1,2 marks the beginning of a new era in particle physics. 
Experimental particle physicists at the LHC are measuring the 
 properties of the new boson11,12, searching for heavier Higgs bosons13 
and trying to understand whether the Higgs boson interacts with 
dark matter14. Cosmologists are trying to understand the symmetry- 
breaking Higgs phase transition that took place early in the history 
of the Universe and whether that event explains the excess of matter 
compared to antimatter15. The measured mass of the Higgs boson13 
implies that the symmetry-breaking quantum vacuum is  metastable16 
unless new physics intervenes. The implications of the discovery  
of the Higgs boson will keep motivating physics research for years  
to come.

One of the key requirements for precisely measuring the  properties 
of the Higgs boson is selecting large, high-purity samples that  contain 
the production and decay of a Higgs particle. Machine learning 
 techniques17 could potentially be used as powerful tools for selecting 
such samples, but challenges remain. These challenges are greater when 
an investigation requires faithful simulation not only of the physics 

observables themselves, but also of their correlations in the data. In 
the measurement of the properties of the Higgs boson11, disagree-
ments between simulations and observations result in label noise and 
 systematic uncertainties in the efficiency of the classifiers that adversely 
effect the classification performance and translate into uncertainties on 
the measured properties of the discovered particle.

To address these challenges in the Higgs-signal-versus-background 
optimization problem, we study a binary classifier that is trained 
with classical simulated annealing7,8 and quantum annealing3–6,18. 
To implement quantum annealing we use a programmable quantum 
annealer (D-Wave Systems, Inc.) housed at the University of Southern 
California’s Information Sciences Institute, which comprises 1,098 
superconducting flux qubits. The optimization problem is mapped to 
one of finding the ground state of a corresponding Ising spin model.  
We use the excited states in the vicinity of the ground state in the 
 training method to improve the accuracy of the classifiers beyond 
the baseline ground-state-finding model. We refer to this approach as 
quantum annealing for machine learning (QAML).

1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA. 2Department of Physics, University of Southern California, Los Angeles, California 90089, USA. 3Center 
for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, USA.4Departments of Electrical Engineering, Chemistry and Physics, University 
of Southern California, Los Angeles, California 90089, USA. †Present address: DeepMind, London, UK. 
*These authors contributed equally to this work.
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Figure 1 | Representative Feynman diagrams of processes that 
contribute to the simulated distributions of the Higgs signal and of the 
background standard-model processes. The signal corresponds to the 
production of a Higgs boson (H) through the fusion of two gluons (g), 
which then decays into two photons (γ) (top). The gluon fusion and Higgs 
decay processes both proceed through virtual top quark (t) loops; t is an 
antitop quark. Representative leading-order and next-to-leading-order 
background processes are standard-model two-photon production 
processes (bottom).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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a signal efficiency εS we use the strong classifier sampled from the 
annealer with the maximum background rejection rB. We construct 
such compound classifiers for simulated and quantum annealing using 
excited states within a fraction f of the ground-state energy Eg—that is, 
all {si} such that H({si}) <  (1 −  f)Eg (note that Eg <  0). Simulated anneal-
ing is used as a natural comparison to quantum annealing on these fully 
connected problems.

In our experiments, quantum annealing struggles to find the true 
minimum of the objective function. This is probably a consequence 
of the fact that the current generation of D-Wave quantum annealers 
suffers from non-negligible noise on the programmed Hamiltonian. 
The problem of noise is compounded by the relatively sparse graph, 
which requires a chain of qubits to embed the fully connected  logical 
Hamiltonian. In our case, 12 qubits are ferromagnetically coupled 

to act as a single logical qubit. We therefore study and interrogate 
 current-generation quantum annealers and interpret their performance 
as a lower bound for the performance of future systems with lower 
noise and denser hardware graphs.

In Fig. 3 we plot the ROC curves illustrating the ability to discrimi-
nate between signal and background for each algorithm, with f =  0.05 
and training datasets with 100 or 20,000 events. We observe a clear 
separation between the annealing-based classifiers and the binary- 
decision-tree-based XGB and DNN classifiers, with the advantage of 
the annealers appearing for small training datasets, but  disappearing 
for the larger datasets. In Fig. 4 we plot the area under the ROC 
curve for each algorithm, for training datasets of various sizes and 
f =  0.05 (the largest value we used). An ideal classifier would have 
an area of 1. We find that quantum and simulated annealing have 
comparable performance, implying high robustness to approximate 
solutions of the training problem. This feature appears to general-
ize across the domain of QAML applications (Li, R. et al., submitted  
manuscript). Here the asymptotic performance of the QAML model is 
achieved with just 1,000 training events, and thereafter the algorithm 
does not benefit from additional data. This is not true for the DNN or 
XGB. A notable finding of our work is that QAML has an advantage 
over both the DNN and XGB when training datasets are small. This is 
shown in Fig. 5 in terms of the integral of the true negative differences 
over signal efficiency for various ROCs. In the same regime of small 
training datasets, quantum annealing develops a small advantage over 
simulated annealing as the fraction of excited states f used increases, 
saturating at f =  0.05. However, the uncertainties are too large to draw 
definitive conclusions in this regard. In the regime of large training 
datasets, simulated annealing has a small advantage over quantum 
annealing, to a significance of approximately 2σ.

In our study we have explored QAML, a simple method inspired by 
the prospect of using quantum annealing as an optimization technique 
for constructing classifiers, and applied the technique to the  detection 
of Higgs decays. The training data are represented in a compact 
 representation of O(N2) couplers and local biases in the Hamiltonian 
for N weak classifiers. The resulting strong classifiers perform compa-
rably to the state-of-the-art standard methods that are currently used in 
high-energy physics, and have an advantage when the training datasets 
are small. The role of quantum annealing is that of a subroutine for 
sampling the Ising problem that may in the future have advantages 
over classical samplers, either when used directly or as a way of seeding 
classical solvers with high-quality initial states.

QAML is resistant to overfitting because it involves an explicit 
linearization of correlations. It is also less sensitive to errors in the 
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Figure 4 | Area under the ROC curve (AUROC) for the annealer-trained 
networks with f = 0.05, the DNN and XGB. Results shown are for the 
36-variable networks at λ =  0.05. As in Fig. 3, the solid lines correspond 
to quantum (green) or simulated (blue) annealing, and dotted lines to the 
DNN (red) or XGB (cyan). The vertical lines denote 1σ error bars, defined 
by the variation over the training sets (grey) plus statistical error (green); 
see Supplementary Information section 6 for details of the uncertainty 
analysis. Whereas the DNN and XGB have an advantage for large training 
datasets, we find that the annealer-trained networks perform better for 
small training datasets. The overall performance of QAML and its features, 
including the advantage at small training-dataset sizes and saturation of 
the AUROC at approximately 0.64, are stable across a range of values of 
λ. An extended version of this plot, for various values of λ, is shown in 
Supplementary Fig. 2.
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Figure 5 | Difference between the AUROCs for different algorithms.  
a, Quantum annealing versus the DNN (QA −  DNN). b, Quantum 
annealing versus XGB (QA −  XGB). c, Quantum versus simulated 
annealing (QA −  SA). In all cases, the difference is shown as a function of 
training-dataset size and fraction f above the minimum energy returned 

(the same values of f are used for quantum and simulated annealing in c). 
Formally, we plot ∫ ε ε ε−r r[ ( ) ( )]di

0
1

B
QA

S B S S, where rB is the maximum 
background rejection, i ∈  {DNN, XGB, SA} and εS is the signal efficiency. 
The vertical lines denote 1σ error bars. The large error bars are due to 
noise on the programmed Hamiltonian.
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Conclusion
• The first ten years of the LHC have been highly successful


•  Highlight was the exciting discovery of a new particle: the Higgs boson


• The upcoming HL-LHC could provide answers to many outstanding 
questions in physics


• Significant computing challenge ahead to process the data needed for 
physics analysis


• Many new ideas and paradigms are being actively explored


• Can quantum computing play a role?



Thank you!

Many thanks to CERN, the ATLAS & CMS 
experiments, I. Bird, A. Hoecker,vL. Linder, 
S. Montangero, I. Shapoval, G. Stewart, A. 
Sfyrla, K. Rupp, J.-R. Vlimant for material 

used in this presentation
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The W Boson has mass !
�56

 [MeV]Wm
80320 80340 80360 80380 80400 80420

LEP Comb. 33 MeV±80376

Tevatron Comb. 16 MeV±80387

LEP+Tevatron 15 MeV±80385

ATLAS 19 MeV±80370

Electroweak Fit 8 MeV±80356

Wm
Stat. Uncertainty
Full Uncertainty

ATLAS

as does the Z boson



Many particles in the SM have mass
�57
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Reminder: Potential Energy
�58


