Can quantum computing help to

unlock the secrets of the universe?
Heather M. Gray
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A Giant Microscope?

Uncertainty Principle
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Protons move at 0.999999990 times the speed of light



From atom to quark
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The Standard Model

Forces
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also known as:

Particle Colliders  atomsmashers

Luminosity: measure of the
number of collisions
I.e. how much data
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The LHC
Experiments
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Weight :
(tons) Length (m) | Height (m)
ATLAS 7000 45 21
CMS 12500 25 15

lego detector



https://build-your-own-particle-detector.org/models/atlas-lego-model/
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From detector to physics
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- Data Challenge:
* 40MHz collision rate

» ~6M seconds data-taking per year Zetabytes per year
- ~1MB RAW event size




Throw away what you don’t need

Calorimeter detectors

* Complex trigger system to select

i nteresti n g eve nts TileCal| Muon detectors o
Level-1 Calo ! 44 Level-1 Muon | Read-Out
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e Keep 1% of L1 events

e Decision within 200ms



Data Processing

e ATLAS records ~1010 RAW
events a year

« ~15s per event to reconstruct
the physical particles

e ~5000 CPU years

e Can’t do this very many times

@ATLAS

EXPERIMENT
http://atlas.ch

Run: 189280
Event: 143576946
2011-09-14 12:37:11 CEST




LHC Computing

 Use 1M CPU cores every hour of every day

e Store 1000PB of data

ROOT

Data Analysis Framework

 Make 100PB of data transfers per year N

Tier-2 sites

(about 160)

-.- .
Tier-1 sites L . v
167 sites,
42 countries
~1M CPU cores
ATLAS
"ERIMF
~1 EB of storage athena v
CMsS-SwW / cCmssw @ Watch~ 73 W Star 499  YFork 2,415
> 2 million iobgday <> Code Issues 311 Pull requests 117 Projects 0 Wiki Insights
CMS Offline Software http://cms-sw.github.io/
1 0_1 oo Gb Iinks hep cern cms-experiment c-plus-plus
P 186,380 commits {# 95 branches © 3,954 releases 22 684 contributors







We have an
extraordinarily
successful description
of nature:

The Standard Model




But ... questions remained

*What is the origin of particle masses ?
*What is dark matter ?

*Why Is there so much more matter than antimatter in the
universe?

* What happened in the first few moments of the universe ?

* Are there other forces ? The LHC is looking for
answers to all these
questions



But ... questions remained

e \What is dark matter ?

*Why Is there so much more matter than antimatter in the
universe?

* What happened in the first few moments of the universe ?

* Are there other forces ? The LHC is looking for
answers to all these
questions



The Standard Model equations
would work perfectly if all particles
were massless

... but experiments told us otherwise



The Higgs Boson

a mathematical trick
Early universe Today

T V() A V($)

| have no vacuum
expecation value!
» /
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hang out down there.

This costs too much
. energy! | think I'l
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First predicted almost 60 years ago!
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Seeing particles, e.g. the Higgs

Highly unstable elementary particle!
Lifetime is only 1.6x10-22 s

xample: Higgs
decay to two
photons

See Higgs by studying its remnants:
the particles it decay to
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Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST




Higgs to two photons (H—vyy)
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Higgs to 4 leptons (H—=ZZ*— i)
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SCAN-0008106 11.4.1983

PRELIMINARY PERFORMANCE E£STIMATES FOR A LEP PROTON COLLIDER
S. Myers and W. Schnell
. Introduction

This analysis was stimulated by news from the United States where very
large pp and pp colliders are actively being studied at the moment.
Indeed, a first look at the basic performance limitations of possible pp or
pp rings in the LEP tunnel seems overdue, hawever far off in the future a
possible start of such a p-LEP project may yet be in time. What we shall
discuss is, in fact, rather obvious, but such a discussion has, to the best
of our knowledge, not been presented so far.

We shall not address any detailed design questions but shall give
basic equations and make a few plausible assumptions for the purpose of
illustration,. Thus, we shall assume throughout that the maximum energy
per beam is 8 TeV (corresponding to a little over 9 T bending field in very
advanced superconducting magnets) and that injection is at 0.4 TeV. The
ring circumference is, of course that of LEP, namely 26,659 m. It should
be clear from this requirement of "Ten Tesla Magnets" alone that such a
project is not for the near future and that it should not be attempted be-
fore the technology is ready.

Duration of projects /planning stability:
First LHC workshop 1984 !




Nobel Prize in Physics
2013
to
Peter Higgs
Francois Englert




More questions to be solved

e What is dark matter ?

*Why Is there so much more matter than antimatter in the
universe?

* What happened in the first few moments of the universe ?

e Are there other forces ?



Luminosity [cm™s™]

Solution: More data

e Peak luminosity =Integrated luminosity
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Only have 5% of the total data expected from the LHC



Major accelerator upgrade:
The High-Luminosity LHC
(HL-LHC)

~) CIVIL ENGINEERING “CRAB"” CAVITIES
2 new 300-metre service tunnels and 16 superconducting ,crab“
2 shafts near to ATLAS and CMS. cavities for each of the ATLAS
and CMS experiments to tilt the

beams before collisions.

12 more powerful quadrupole magnets
for each of the ATLAS and CMS
expenments, designed to increase the -

concentration of the beams before

colksions

FOCUSING MAGNETS sp

SUPERCONDUCTING LINKS BENDING MAGNETS

Electrical transmission lines based on a COLLIMATORS 4 pairs of shorter and more
high-temperature superconductor to car y 15 10 20 new collimators and 60 replacement powerful dipole bending magnets
current to the magnets from the new service collimators to reinforce machine protection, to free up space for the new
tunnels near ATLAS and CMS. collimators

Great for physics ... but a challenge for computing

mive 2015

CERN Nove



HL-LHC Events

First data
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LHC Science Facebook

data uploads SKA Phase 1 -
~200 PB 180 PB 2023

~300 PB/year
Google science data

searches
98 PB

LHC-2016
50 PB raw data

Google

Internet archive Yearly data volumes

~15EB
HL-LHC - 2026

~600 PB Raw data

SKA Phase 2 — mid-2020's HL-LHC - 2026
~1 EB science data ~1 EB Physics data

\ . Billion of these




Technology Challenges

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance .
(SpecINT x 107)

Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020
Year


https://github.com/karlrupp/microprocessor-trend-data

Shifting landscape for
end-to-end computing

Quantum
Computing
?

L1 Cache

CPU

/ Memory \ ————
/ Spinning Disk \

i Tape E
The Good Old Days i

The Brave
New World




The HL-LHC Computing Problem
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Can guantum computing play a
role?



Initial ideas of quantum computing

“Let the computer itself be built of
quantum mechanical elements which obey
quantum mechanical laws.”

L.OS ALAMOS NATIONAL LABORATORY
40th ANNIVERSARY CONFERENCE
NEW DIRECTIONS IN PHYSICS AND CHEMISTRY
April 13-15, 1983

Wednesday, April 13
6:00-8:00 p.M.—Informal Reception at Fuller Lodge
Thursday, April 14
Main Auditorium, Administration Building
8:45 A.M. Welcome—Donald M. Kerr, Director
Los Alamos National Laboratory
Session I—Robert Serber, Chairman

9:00 A.M. Richard Feynman
“Tiny Computers Obeying Quantum-Mechanical
Laws”
10:00 A.M. I. I. Rabi

“How Well We Meant”
11:00-11:15 A.Mm.—Intermission
Session II—Donald W. Kerst, Chairman
11:15 A.M. Owen Chamberlain
“Tuning Up the Time Projection Chamber’’
12:15-1:15 p.Mm.—Lunch
1:15 P.M. Felix Bloch
‘“Past, Present and Future of Nuclear Magnetic
Resonance”
2:15-2.80 p.m.—Intermission \
Session I11I—Edwin McMillan, Chairman s
2:80 p.M. Robert R. Wilson
“Early Los Alamos Accelerators and New
Accelerators”
3:80 P.M. Norman Ramsey
“Experiments on Time-Reversal Symmetry
and Parity”

4:30 p.M. Ernest Titterton _» -
“Physics with Heavy Ion Accelerators” - )
‘ . -

RICHARD FEYNMAN (1982)
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Simulating
Correlations

Currently simulate events assuming the evolution of each particle is independent



Entanglement

e Particles obey quantum mechanics

e Correlations exist between them

* |dea: exploit entanglement between qubits on a quantum computer to

improve the description of the parton shower
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https://arxiv.org/abs/1901.08148
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( wall-time/event ) [s]
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Reconstruction of 2017 pp data, (s =13 TeV

in Athena release 21.0.37 tuned for (u) = 30
on Intel” Xeon" CPU E5-2630 v3

low-u reference runs 10862 luminosity blocks
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Track reconstruction
IS expected to have
the largest CPU
burden at the HL-
LHC

luminosity block count

HL-LHC: p= 140-200



V- Different Algorithms: Associative Memory

Quantum associative memory has
potential for exponential storage
capacity
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https://arxiv.org/abs/1902.00498

QuAM Demonstration on IBM-Q

QuAM storage circuit generator

EX.: complete
circuit for retrieving
one 2-bit pattern

QuAM retrieval circuit generator
EX.: complete

circuit for retrieving
one 2-bit pattern E o EE @@ @& mg_ _@m__ . __@s&o_-._oBg_

arXiv:1902.00498



https://arxiv.org/abs/1902.00498
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Reformulate track reconstruction as an
energy minimisation problem

e Solve using the D-Wave quantum annealer

e Solution time not expected to scale with
number of tracks

potential doublets —l

preprocessing / model building

filter doublets
g create triplets k
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7 solve QUBO doublets <
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solving
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¢ Different Algorithms: Quantum Annealing
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https://arxiv.org/abs/1902.08324
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https://arxiv.org/abs/1902.08324

L°8 Finding the Higg




Finding the Higgs Boson
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Background rejection

doi:10.1038/nature24047

Solving a Higgs optimization problem with quantum
annealing for machine learning

Alex Mott!t*, Joshua Job?3*, Jean-Roch Vlimant', Daniel Lidar>* & Maria Spiropulu’
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https://www.nature.com/articles/nature24047

Conclusion

* The first.ten years of the LHC have been: highly successtiul

o Highlight was theexciting discovery of a new particle: the Higgs boson

* The upcoming HL-LHC could provide answers to many outstanding
questions In physics

o -Significant computing.challenge ahead to process the data needed for
physics analysis

 Many new ideas.and paradigms. are being actively.explored

 Can quantum computing play a role?
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| —— Who am |? Assistant Professor
e s of Physics at UC Berkeley
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Berkeley

IINIVERCSITY OF CAI IFORNIA

What do | do? Study the
Higgs Boson as a member
of the ATLAS experiment




Data preparation,
Reconstruction & Calibration

Detector

Publication

Data analysis Theory / Simulations

Background

# events

Relevant quantity




The W Boson has mass !

| |
ATLAS ® my
= Stat. Uncertainty
— Full Uncertainty
LEP Comb. P 80376+33 MeV
Tevatron Comb. ® 80387+16 MeV
L EP+Tevatron ® 80385+15 MeV
ATLAS ® 80370+19 MeV
Electroweak Fit ® 80356+8 MeV
| | | |
80320 80340 80360 80380 80400 80420
m,, [MeV]

as does the Z boson



Many particles in the SM have mass ”
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-031/

Reminder: Potential Energy

Potential energy

Energyin

Energy out

58



