
Introduction to Stateful Stream
Processing with Apache Flink

Robert Metzger
@rmetzger_

robert@ververica.com

2

3

Original creators of
Apache Flink®

Ververica Platform
Open Source Apache Flink

+ Application Manager

Apache Flink 101

4

Apache Flink

§ Apache Flink is an open source stream processing
framework
• Low latency
• High throughput
• Stateful
• Distributed

5

What is Apache Flink?

6

Batch
Processing

process static and
historic data

Data Stream
Processing
realtime results

from data streams

Event-driven
Applications
data-driven actions

and services

Stateful Computations Over Data Streams

Use Case: Streaming ETL

7

Periodic ETL

Data Pipeline / Real-time ETL

● Periodic ETL is the traditional
approach
○ External tool periodically

triggers ETL batch job

● Data pipelines continuously
move data
○ Ingestion with low latency
○ No artificial data boundaries

Use Case: Data Analytics

● Batch analytics is great for ad-hoc
queries
○ Queries change faster than data
○ Interactive analytics / prototyping

● Stream analytics continuously
processes data
○ Data changes faster than queries
○ Live / low latency results
○ No Lambda architecture

required!

Stream Analytics

Batch Analytics

Use Case: Event-driven applications

9

● Traditional application design
○ Compute & data tier architecture
○ React to and process events
○ State is stored in (remote) database

● Event-driven application
○ State is maintained locally
○ Guaranteed consistency by

periodic state checkpoints
○ Tight coupling of logic and data

(microservice architecture)
○ Highly scalable design

Event-driven Application

Transactional Application

Hardened at scale

10

Details about their use cases and more users are listed on Flink’s website at https://flink.apache.org/poweredby.html

https://flink.apache.org/poweredby.html

Case Study: Single’s Day

11

● Chinese Shopping Festival
● Very high peak load

○ 100s millions records per second
○ 100s thousands payments per

second
○ 10 TBs of managed state
○ 10s thousands of cores

● Flink used in various areas in the
process incl. payment, shipping,
realtime recommendations and the
giant dashboard

References
● https://www.ververica.com/blog/singles-day-2018-data-in-a-flink-of-an-eye
● https://medium.com/@alitech_2017/how-to-cope-with-peak-data-traffic-on-11-11-the-secrets-of-

alibaba-stream-computing-17d5e807980c

https://www.ververica.com/blog/singles-day-2018-data-in-a-flink-of-an-eye
https://medium.com/@alitech_2017/how-to-cope-with-peak-data-traffic-on-11-11-the-secrets-of-alibaba-stream-computing-17d5e807980c

Building blocks

12

13

Event Streams State (Event) Time Snapshots

The Core Building Blocks

real-time and
hindsight

complex
business logic

consistency with
out-of-order data

and late data

forking /
versioning /
time-travel

Stateful Event & Stream Processing

14

Source

Transformation

Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Streaming
Dataflow

Source Transform Window
(state read/write)

Sink

Stateful Event & Stream Processing

15

Source Filter /
Transform

State
read/write Sink

Stateful Event & Stream Processing

16

Scalable embedded state

Access at memory speed &
scales with parallel operators

Stateful Event & Stream Processing

17

Re-load state

Reset positions
in input streams

Rolling back computation
Re-processing

Time: Different Notions of Time

18

Event Producer Message Queue Flink
Data Source

Flink
Window Operator

partition 1

partition 2

Event
Time

Ingestion
Time

Window
Processing

Time

Broker
Time

Time: Event Time Example

19

1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV

Episode
V

Episode
VI

Episode
I

Episode
II

Episode
III

Episode
VII

Event Time

20

Event Streams State (Event) Time Snapshots

Recap: The Core Building Blocks

real-time and
hindsight

complex
business logic

consistency with
out-of-order data

and late data

forking /
versioning /
time-travel

APIs

21

The APIs

22

Process Function (events, state, time)

DataStream API (streams, windows)

Table API (dynamic tables)

Stream SQL

Stream- &
Batch Processing

Analytics

Stateful
Event-Driven
Applications

Process Function

23

class MyFunction extends ProcessFunction[MyEvent, Result] {

// declare state to use in the program
lazy val state: ValueState[CountWithTimestamp] = getRuntimeContext().getState(…)

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]): Unit = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

def onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[Result]): Unit = {
// handle callback when event-/processing- time instant is reached

}
}

Data Stream API

24

val lines: DataStream[String] = env.addSource(
new FlinkKafkaConsumer<>(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Table API & Stream SQL

25

Deployment & Integrations

26

Deployment

27

Integrations

28

● Event logs:
○ Kafka, Kinesis, Pulsar*

● File systems:
○ S3, HDFS, NFS, MapR FS, ...

● Encodings:
○ Avro, JSON, CSV, ORC, Parquet

● Databases:
○ JDBC, HCatalog

● Key-Value Stores
○ Cassandra, Elasticsearch, Redis*

Concluding…

29

Early Bird ticket sales ends July 15th

Q & A

31

Get in touch via Twitter:
@rmetzger_
@ApacheFlink

Get in touch via eMail:
robert@ververica.com
info@ververica.com

What’s happening in Flink these days …

• INSERT INTO flink_sql SELECT * FROM blink_sql
• Turning Table API into an API unified across batch

and streaming (FLINK-11439)
• Integration with Hive ecosystem (FLINK-10556) Stream Operator & DAG API

Runtime

DataSet
(deprecated)

DataStream Table / SQL

• Batch runtime improvements: Fine-grained recovery (FLINK-4256), more
schedulers (FLINK-10429), pluggable shuffle service (FLINK-10653)

• Machine Learning Pipelines on Table API (FLIP-39)

• Table API: Caching of intermediate results (.cache() API) (FLINK-11199)

• Table API: Python support (FLINK-12308)

Implementation: State
Checkpointing

34

State, Snapshots, Recovery

35

Coordination via markers, injected into the streams

36

37

38

39

Implementation: Stream SQL

41

Stream SQL: Intuition

42

Stream / Table Duality

Table with Primary KeyTable without Primary Key

Stream SQL: Implementation

43

Query Compilation
Differential Computation

(add/mod/del)

Implementation: Rescaling

44

Rescaling State / Elasticity

▪ Similar to consistent hashing

▪ Split key space into key groups

▪ Assign key groups to tasks

45

Key space

Key group #1 Key group #2

Key group #3Key group #4

Rescaling State / Elasticity

▪ Rescaling changes key group
assignment

▪ Maximum parallelism
defined by #key groups

▪ Rescaling happens through
restoring a savepoint using
the new parallism

46

Implementation: Time-handling

47

Time: Different Notions of Time

48

Event Producer Message Queue Flink
Data Source

Flink
Window Operator

partition 1

partition 2

Event
Time

Ingestion
Time

Window
Processing

Time

Broker
Time

Time: Watermarks

49

7

W(11)W(17)

11159121417122220 171921

Watermark
Event

Event timestamp

Stream (in order)

7

W(11)W(20)

Watermark

991011141517

Event

Event timestamp

1820 192123

Stream (out of order)

Time: Watermarks in Parallel

50

Source
(1)

Source
(2)

map
(1)

map
(2)

window
(1)

window
(2)

29
29

17

14

14

29
14

14

W(33)

W(17)

W(17)

A|30B|31

C|30

D|15

E|30

F|15G|18H|20

K|35

Watermark

Event Time
at the operator

Event
[id|timestamp]

Event Time
at input streams

Watermark
Generation

M|39N|39Q|44

L|22O|23R|37

Implementation: Queryable State

51

Queryable State

52

Traditional

Queryable State

Queryable State: Implementation

53

Query Client

State
Registry

window(
)/

sum()

Job Manager Task Manager

ExecutionGraph

State Location Server

deploy

status

Query: /job/operation/state-name/key

State
Registry

window(
)/

sum()

Task Manager

(1) Get location of "key-partition"
for "operator" of" job"

(2) Look up
location

(3)
Respond location

(4) Query
state-name and key

local
state

register

State, Snapshots, Recovery

54

stateful
operation

source /
transform

State index
(Hash Table
or RocksDB)

Events are persistent
and ordered (per partition / key)

in the log (e.g., Apache Kafka)

Events flow without replication or synchronous writes

State, Snapshots, Recovery

55

Trigger checkpoint Inject checkpoint barrier

stateful
operation

source /
transform

State, Snapshots, Recovery

56

Take state snapshot RocksDB:
Trigger state

copy-on-write

stateful
operation

source /
transform

State, Snapshots, Recovery

57

Persist state snapshots Durably persist
snapshots

asynchronously

Processing pipeline continues

stateful
operation

source /
transform

Powerful Abstractions

58

Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch
Data Processing

High-level
Analytics API

Stateful Event-
Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to
navigate simple to complex use cases

Event Sourcing + Memory Image

59

event log

persists events
(temporarily)

event /
command

Process

main memory

update local
variables/structures

periodically snapshot
the memory

Event Sourcing + Memory Image

60

Recovery: Restore snapshot and replay events
since snapshot

event log

persists events
(temporarily)

Process

Distributed Memory Image

61

Distributed application, many memory images.
Snapshots are all consistent together.

