Introduction to Stateful Stream Processing with Apache Flink

Robert Metzger

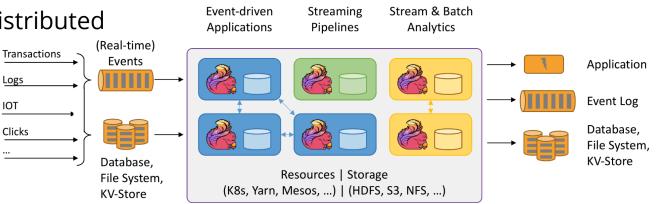
@rmetzger_ robert@ververica.com

VERVERICA PLATFORM

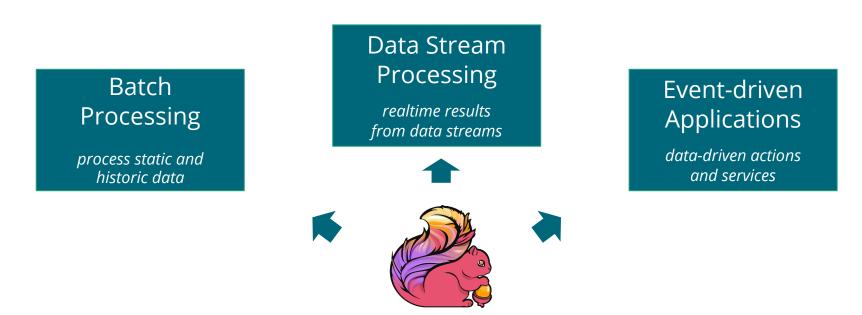
Original creators of Apache Flink® Ververica Platform Open Source Apache Flink + Application Manager

Apache Flink 101

- Apache Flink is an open source stream processing framework
 - Low latency
 - High throughput
 - Stateful



What is Apache Flink?

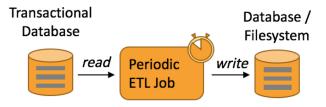


Stateful Computations Over Data Streams

Use Case: Streaming ETL

- Periodic ETL is the traditional approach
 - External tool periodically triggers ETL batch job

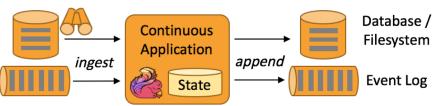
Periodic ETL



- Data pipelines continuously move data
 - Ingestion with low latency
 - No artificial data boundaries

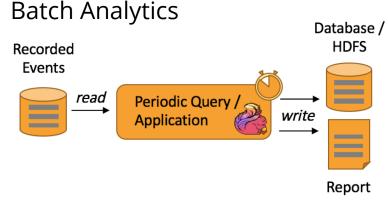
Data Pipeline / Real-time ETL

Real-time Events



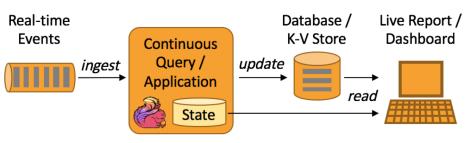
Use Case: Data Analytics

- Batch analytics is great for ad-hoc queries
 - Queries change faster than data
 - Interactive analytics / prototyping



- Stream analytics continuously processes data
 - Data changes faster than queries
 - Live / low latency results
 - No Lambda architecture required!

Stream Analytics

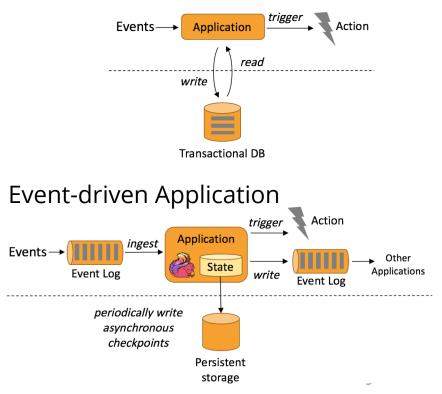


Use Case: Event-driven applications

- Traditional application design
 - Compute & data tier architecture
 - React to and process events
 - State is stored in (remote) database

- Event-driven application
 - State is maintained locally
 - Guaranteed consistency by periodic state checkpoints
 - Tight coupling of logic and data (microservice architecture)
 - Highly scalable design

Transactional Application



Hardened at scale

Details about their use cases and more users are listed on Flink's website at https://flink.apache.org/poweredby.html

Case Study: Single's Day

- Chinese Shopping Festival
- Very high peak load
 - 100s millions records per second
 - 100s thousands payments per second
 - 10 TBs of managed state
 - 10s thousands of cores
- Flink used in various areas in the process incl. payment, shipping, realtime recommendations and the giant dashboard

References

- <u>https://www.ververica.com/blog/singles-day-2018-data-in-a-flink-of-an-eye</u>
- <u>https://medium.com/@alitech_2017/how-to-cope-with-peak-data-traffic-on-11-11-the-secrets-of-alibaba-stream-computing-17d5e807980c</u>

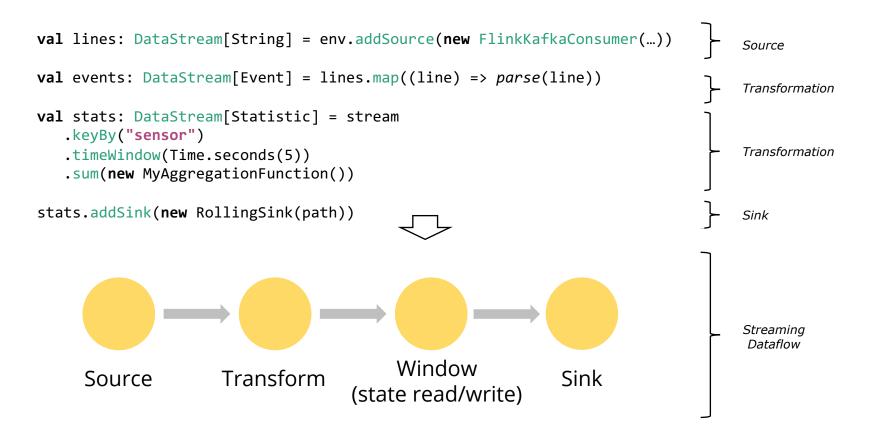
Building blocks

The Core Building Blocks

Event Streams State (Event) Time Snapshots

real-time and hindsight

complex business logic consistency with out-of-order data and late data forking / versioning / time-travel

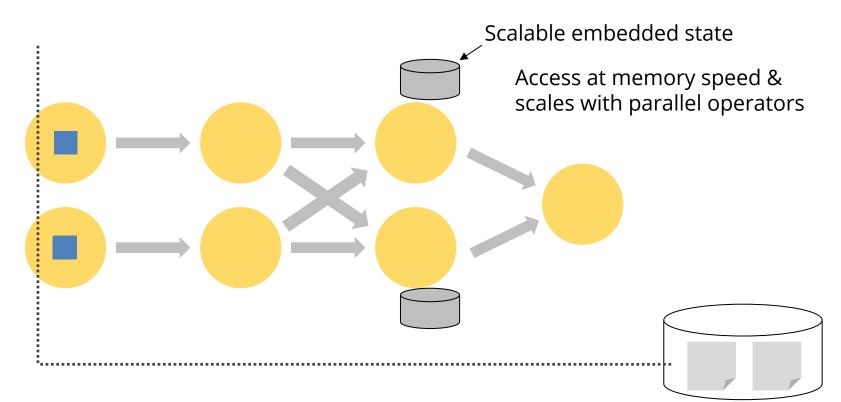


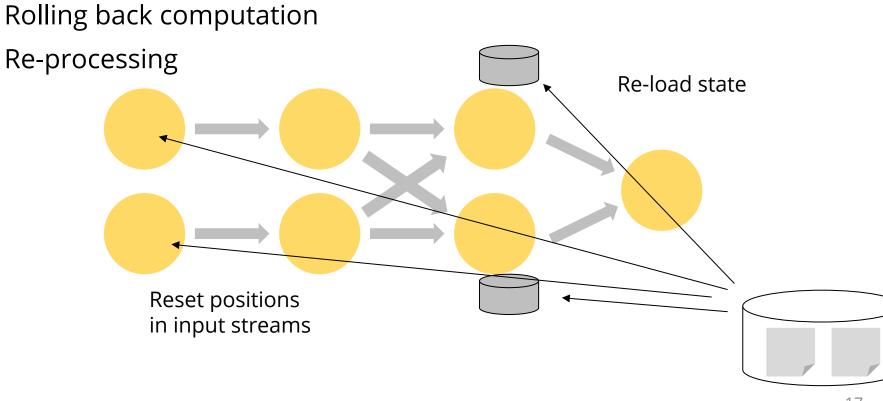
Source

Filter / Transform

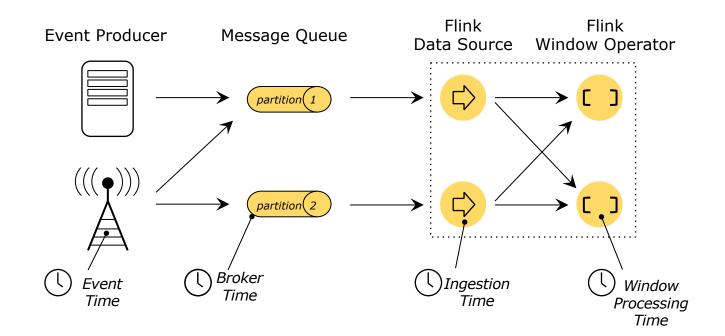
State read/write

Sink



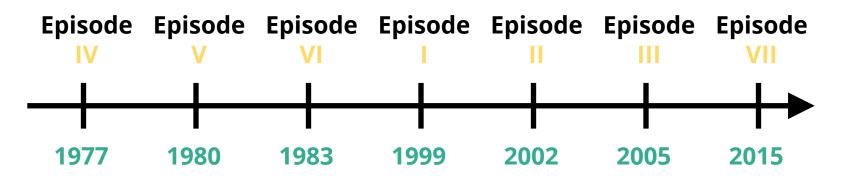


Time: Different Notions of Time



Time: Event Time Example

Event Time



Processing Time

Recap: The Core Building Blocks

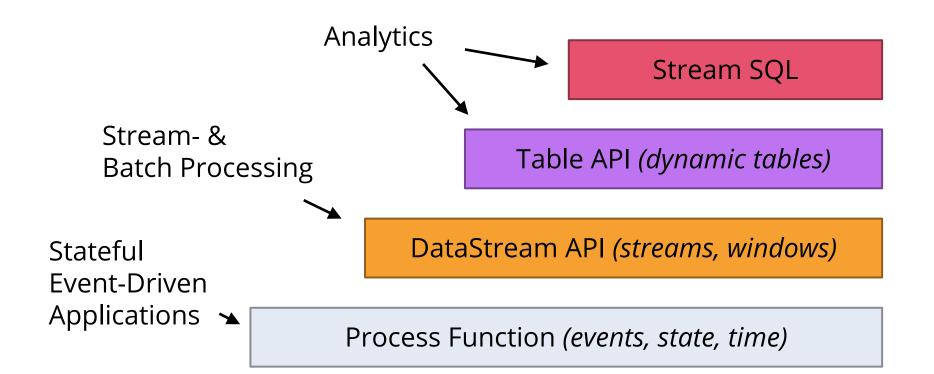
Event Streams State (Event) Time Snapshots

real-time and hindsight

complex business logic consistency with out-of-order data and late data forking / versioning / time-travel

APIs

The APIs



Process Function

class MyFunction extends ProcessFunction[MyEvent, Result] {

```
// declare state to use in the program
lazy val state: ValueState[CountWithTimestamp] = getRuntimeContext().getState(...)
def processElement(event: MyEvent, ctx: Context, out: Collector[Result]): Unit = {
   // work with event and state
    (event, state.value) match { ... }
    out.collect(...) // emit events
    state.update(...) // modify state
    // schedule a timer callback
    ctx.timerService.registerEventTimeTimer(event.timestamp + 500)
}
def onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[Result]): Unit = {
    // handle callback when event-/processing- time instant is reached
```


val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream

- .keyBy("sensor")
- .timeWindow(Time.seconds(5))
- .sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Table API & Stream SQL

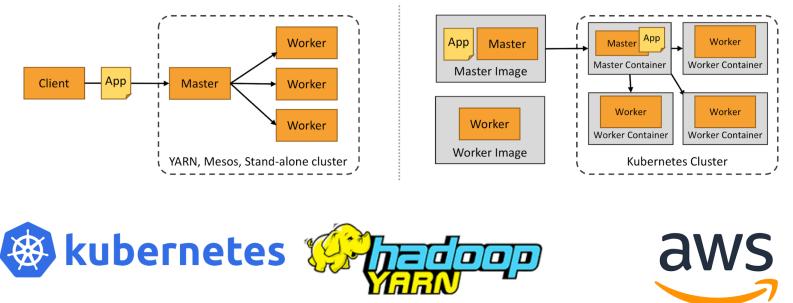
// Table API

val tapiResult: Table = tEnv.scan("sensors") // scan sensors table
.window(Tumble over 1.hour on 'rowtime as 'w) // define 1-hour window
.groupBy('w, 'room) // group by window and room
.select('room, 'w.end, 'temp.avg as 'avgTemp) // compute average temperature

SELECT room, TUMBLE_END(rowtime, INTERVAL '1' HOUR), AVG(temp) AS avgTemp FROM sensors GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room

Deployment & Integrations

Deployment



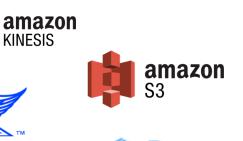
Integrations

• Event logs:

Kafka, Kinesis, Pulsar*

• File systems:

- S3, HDFS, NFS, MapR FS, ...
- Encodings:
 - Avro, JSON, CSV, ORC, Parquet
- Databases:
 - JDBC, HCatalog
- Key-Value Stores
 - Cassandra, Elasticsearch, Redis*



Apache

kafka

cassandra

Parquet

Concluding...

The Apache Flink® Conference Berlin | October 7-9, 2019

Organized by 🐼 ververica

Early Bird ticket sales ends July 15th

flink-forward.org

Q & A

Get in touch via eMail: robert@ververica.com info@ververica.com Get in touch via Twitter: @rmetzger_ @ApacheFlink

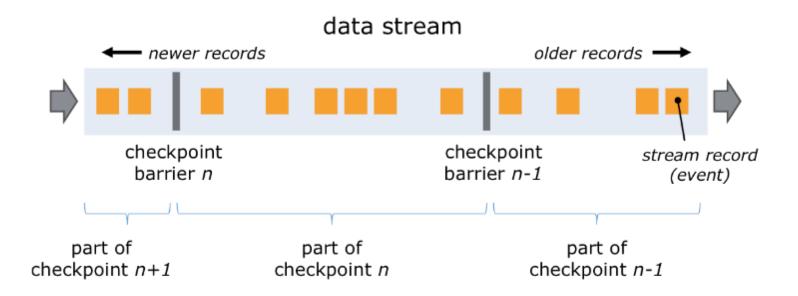
- INSERT INTO flink_sql SELECT * FROM blink_sql
 - Turning Table API into an API unified across batch and streaming (FLINK-11439)
 - Integration with Hive ecosystem (FLINK-10556)

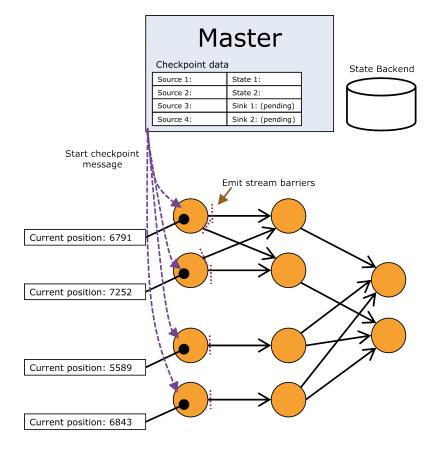
DataSet (deprecated)	DataStream	Table / SQL
	Stream Operator & DAG API	
Runtime		

- Batch runtime improvements: Fine-grained recovery (FLINK-4256), more schedulers (FLINK-10429), pluggable shuffle service (FLINK-10653)
- Machine Learning Pipelines on Table API (FLIP-39)
- Table API: Caching of intermediate results (.cache() API) (FLINK-11199)
- Table API: Python support (FLINK-12308)

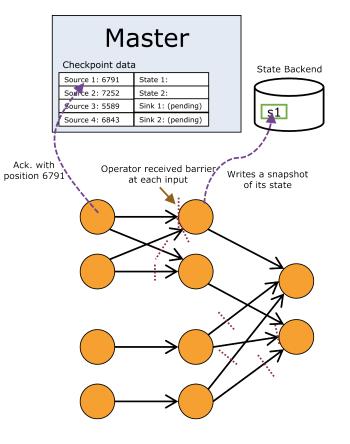
Implementation: State Checkpointing

Coordination via markers, injected into the streams

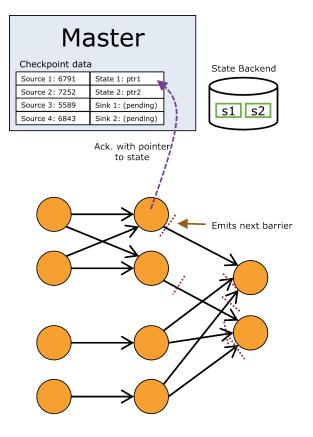




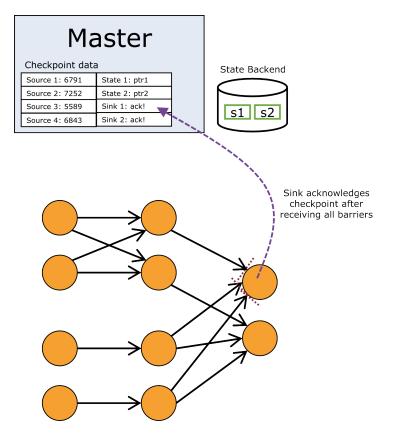
Starting Checkpoint



Checkpoint in Progress



Checkpoint in Progress



Checkpoint Completed

Implementation: Stream SQL

Stream SQL: Intuition

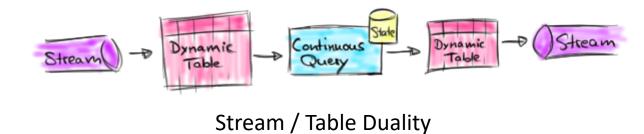
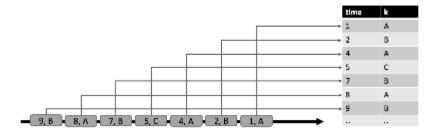
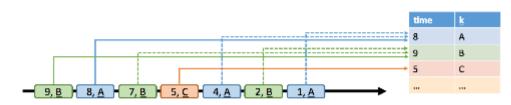


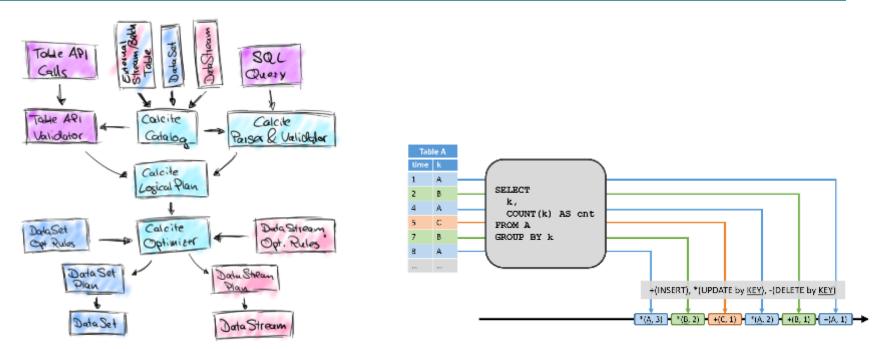
Table without Primary Key

Table with Primary Key





Stream SQL: Implementation



Differential Computation (add/mod/del)

Query Compilation

Implementation: Rescaling

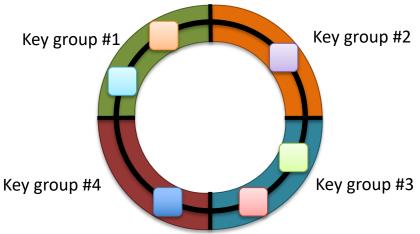
Rescaling State / Elasticity

Similar to consistent hashing

Key space

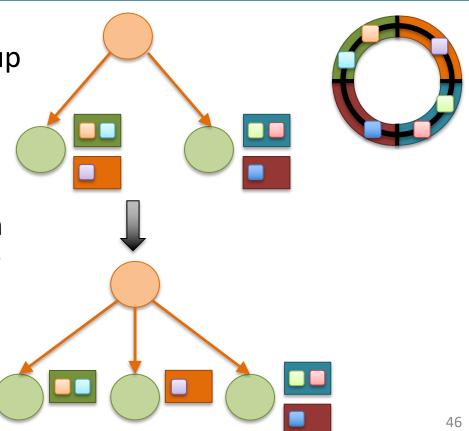
Split key space into key groups

Assign key groups to tasks



Rescaling State / Elasticity

- Rescaling changes key group assignment
- Maximum parallelism defined by #key groups
- Rescaling happens through restoring a savepoint using the new parallism

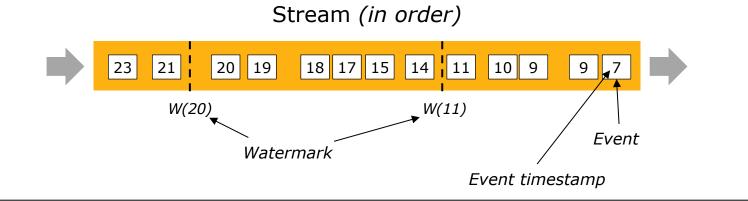


Implementation: Time-handling

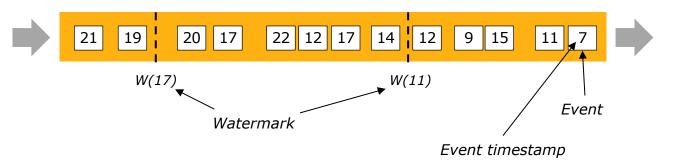
Time: Different Notions of Time



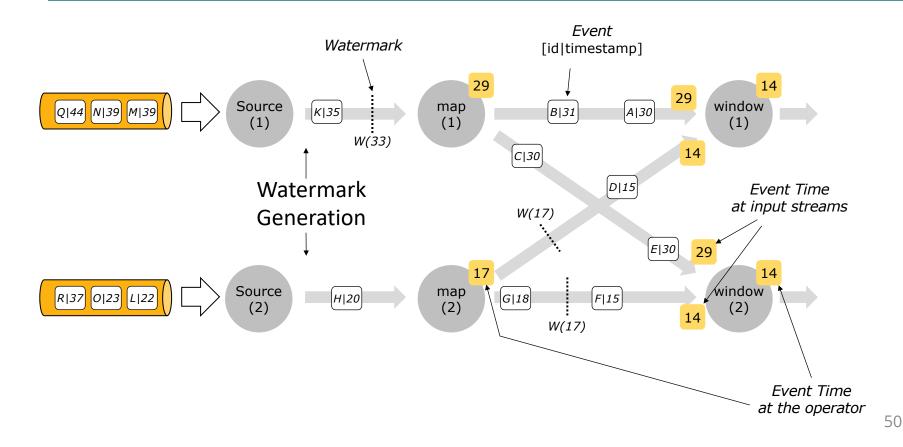
Time: Watermarks



Stream (out of order)

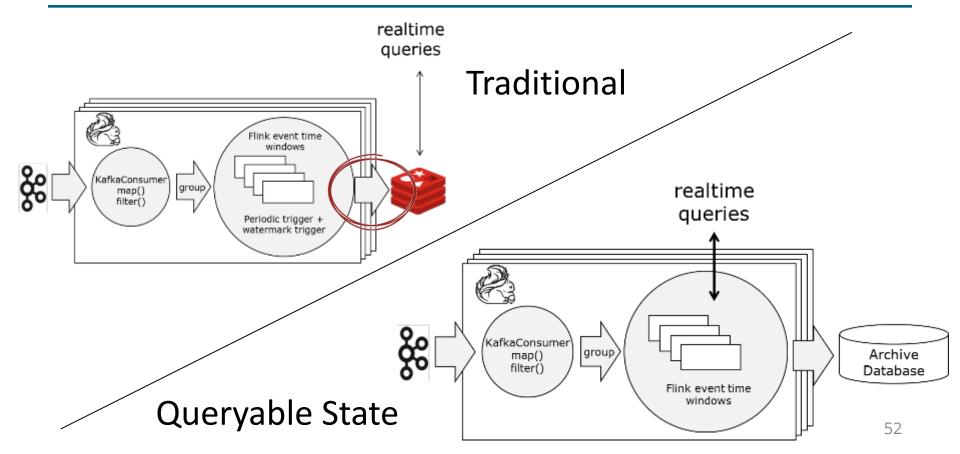


Time: Watermarks in Parallel

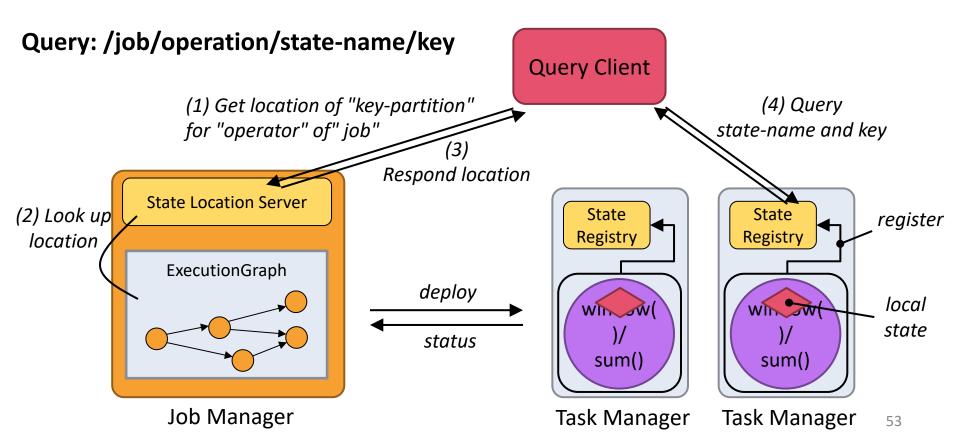


Implementation: Queryable State

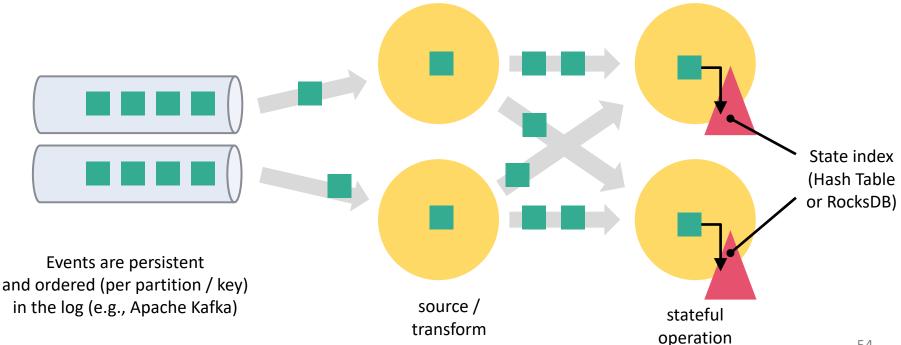
Queryable State

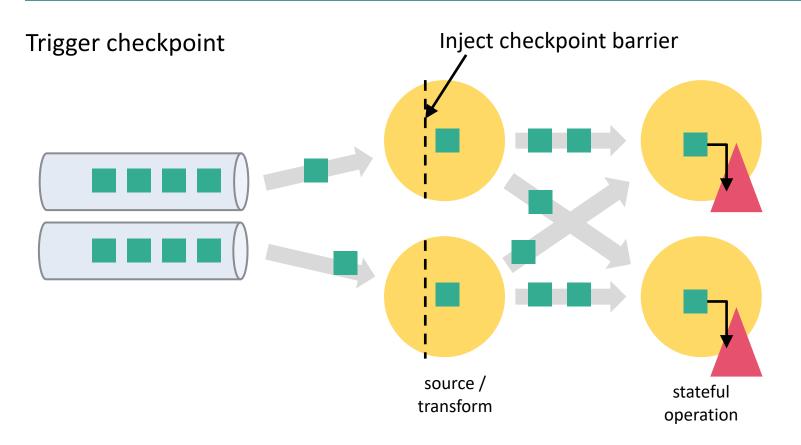


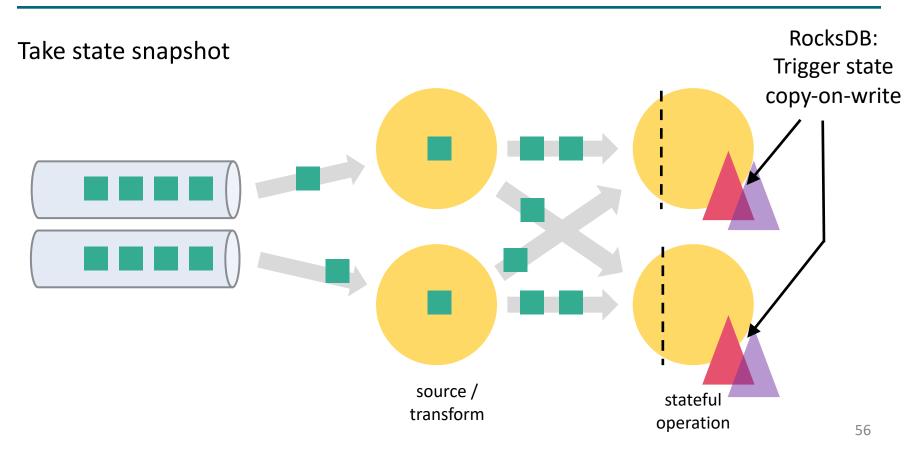
Queryable State: Implementation

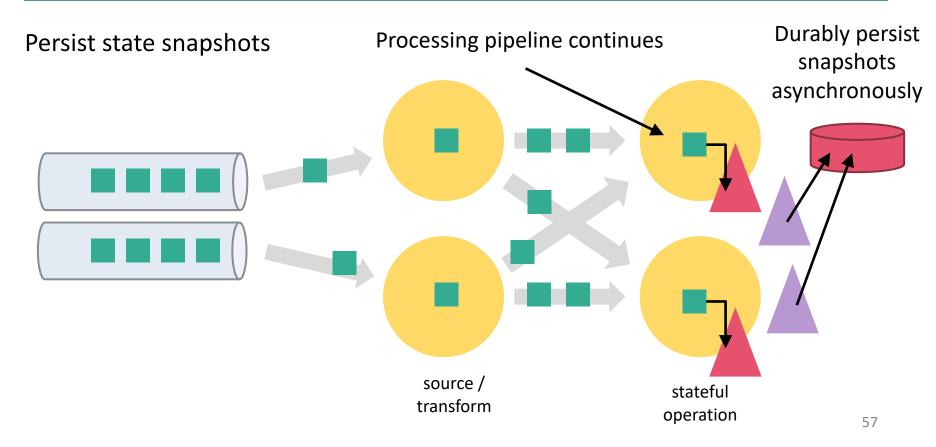


Events flow without replication or synchronous writes





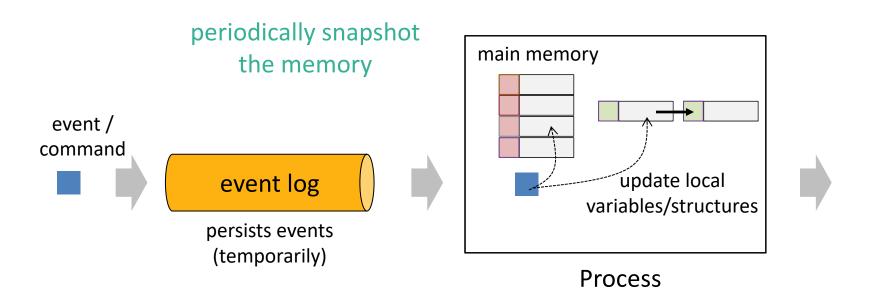




Powerful Abstractions

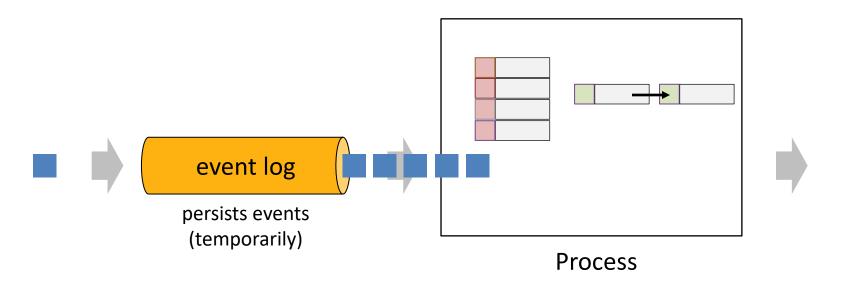
Layered abstractions to navigate simple to complex use cases SELECT room, TUMBLE_END(rowtime, INTERVAL '1' HOUR), AVG(temp) FROM sensors GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room High-level Stream SQL / Tables (dynamic tables) Analytics API val stats = stream Stream- & Batch .keyBy("sensor") DataStream API (streams, windows) .timeWindow(Time.seconds(5)) Data Processing $.sum((a, b) \rightarrow a.add(b))$ Stateful Event-Process Function (events, state, time) Driven Applications def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = { // work with event and state (event, state.value) match { ... } out.collect(...) // emit events state.update(...) // modify state // schedule a timer callback ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

Event Sourcing + Memory Image



Event Sourcing + Memory Image

Recovery: Restore snapshot and replay events since snapshot



Distributed Memory Image

Distributed application, many memory images. Snapshots are all consistent together.

