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Apache Flink 101
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Apache Flink

§ Apache Flink is an open source stream processing 
framework
• Low latency
• High throughput
• Stateful
• Distributed
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What is Apache Flink?
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Batch 
Processing

process static and
historic data

Data Stream 
Processing
realtime results

from data streams

Event-driven
Applications
data-driven actions

and services

Stateful Computations Over Data Streams



Use Case: Streaming ETL
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Periodic ETL

Data Pipeline / Real-time ETL

● Periodic ETL is the traditional 
approach
○ External tool periodically 

triggers ETL batch job

● Data pipelines continuously 
move data
○ Ingestion with low latency
○ No artificial data boundaries



Use Case: Data Analytics

● Batch analytics is great for ad-hoc 
queries
○ Queries change faster than data
○ Interactive analytics / prototyping

● Stream analytics continuously 
processes data
○ Data changes faster than queries
○ Live / low latency results
○ No Lambda architecture 

required!

Stream Analytics

Batch Analytics



Use Case: Event-driven applications
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● Traditional application design
○ Compute & data tier architecture
○ React to and process events
○ State is stored in (remote) database

● Event-driven application
○ State is maintained locally
○ Guaranteed consistency by 

periodic state checkpoints
○ Tight coupling of logic and data 

(microservice architecture)
○ Highly scalable design

Event-driven Application

Transactional Application



Hardened at scale
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Details about their use cases and more users are listed on Flink’s website at https://flink.apache.org/poweredby.html

https://flink.apache.org/poweredby.html


Case Study: Single’s Day
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● Chinese Shopping Festival 
● Very high peak load

○ 100s millions records per second
○ 100s thousands payments per 

second
○ 10 TBs of managed state
○ 10s thousands of cores

● Flink used in various areas in the 
process incl. payment, shipping, 
realtime recommendations and the 
giant dashboard

References
● https://www.ververica.com/blog/singles-day-2018-data-in-a-flink-of-an-eye
● https://medium.com/@alitech_2017/how-to-cope-with-peak-data-traffic-on-11-11-the-secrets-of-

alibaba-stream-computing-17d5e807980c

https://www.ververica.com/blog/singles-day-2018-data-in-a-flink-of-an-eye
https://medium.com/@alitech_2017/how-to-cope-with-peak-data-traffic-on-11-11-the-secrets-of-alibaba-stream-computing-17d5e807980c


Building blocks

12



13

Event Streams State (Event) Time Snapshots

The Core Building Blocks

real-time and
hindsight

complex
business logic

consistency with
out-of-order data

and late data

forking /
versioning /
time-travel



Stateful Event & Stream Processing
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Source

Transformation

Transformation

Sink

val lines: DataStream[String] = env.addSource(new FlinkKafkaConsumer(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

Streaming
Dataflow

Source Transform Window
(state read/write)

Sink



Stateful Event & Stream Processing

15

Source Filter /
Transform

State
read/write Sink



Stateful Event & Stream Processing
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Scalable embedded state 

Access at memory speed &
scales with parallel operators



Stateful Event & Stream Processing
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Re-load state

Reset positions
in input streams

Rolling back computation
Re-processing



Time: Different Notions of Time
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Event Producer Message Queue Flink
Data Source

Flink
Window Operator

partition  1

partition  2

Event
Time

Ingestion
Time

Window
Processing

Time

Broker
Time



Time: Event Time Example
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1977 1980 1983 1999 2002 2005 2015

Processing Time

Episode
IV

Episode
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Episode
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Episode
I

Episode
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Episode
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Episode
VII

Event Time
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Event Streams State (Event) Time Snapshots

Recap: The Core Building Blocks

real-time and
hindsight

complex
business logic

consistency with
out-of-order data

and late data

forking /
versioning /
time-travel



APIs
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The APIs
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Process Function (events, state, time)

DataStream API (streams, windows)

Table API (dynamic tables)

Stream SQL

Stream- &
Batch Processing

Analytics

Stateful
Event-Driven
Applications



Process Function
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class MyFunction extends ProcessFunction[MyEvent, Result] {

// declare state to use in the program
lazy val state: ValueState[CountWithTimestamp] = getRuntimeContext().getState(…)

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]): Unit = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

def onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[Result]): Unit = {
// handle callback when event-/processing- time instant is reached

}
} 



Data Stream API
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val lines: DataStream[String] = env.addSource(
new FlinkKafkaConsumer<>(…))

val events: DataStream[Event] = lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))



Table API & Stream SQL
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Deployment & Integrations
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Deployment
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Integrations
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● Event logs: 
○ Kafka, Kinesis, Pulsar*

● File systems: 
○ S3, HDFS, NFS, MapR FS, ...

● Encodings: 
○ Avro, JSON, CSV, ORC, Parquet

● Databases: 
○ JDBC, HCatalog 

● Key-Value Stores
○ Cassandra, Elasticsearch, Redis*



Concluding…

29



Early Bird ticket sales ends July 15th



Q & A

31

Get in touch via Twitter:
@rmetzger_
@ApacheFlink

Get in touch via eMail:
robert@ververica.com
info@ververica.com



What’s happening in Flink these days … 

• INSERT INTO flink_sql SELECT * FROM blink_sql
• Turning Table API into an API unified across batch 

and streaming (FLINK-11439)
• Integration with Hive ecosystem (FLINK-10556) Stream Operator & DAG API

Runtime

DataSet
(deprecated)

DataStream Table / SQL

• Batch runtime improvements: Fine-grained recovery (FLINK-4256), more 
schedulers (FLINK-10429), pluggable shuffle service (FLINK-10653)

• Machine Learning Pipelines on Table API (FLIP-39)

• Table API: Caching of intermediate results (.cache() API) (FLINK-11199)

• Table API: Python support (FLINK-12308)



Implementation: State 
Checkpointing

34



State, Snapshots, Recovery

35

Coordination via markers, injected into the streams
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Implementation: Stream SQL
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Stream SQL: Intuition
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Stream / Table Duality

Table with Primary KeyTable without Primary Key



Stream SQL: Implementation
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Query Compilation
Differential Computation

(add/mod/del)



Implementation: Rescaling

44



Rescaling State / Elasticity

▪ Similar to consistent hashing

▪ Split key space into key groups

▪ Assign key groups to tasks
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Key space

Key group #1 Key group #2

Key group #3Key group #4



Rescaling State / Elasticity

▪ Rescaling changes key group 
assignment

▪ Maximum parallelism 
defined by #key groups

▪ Rescaling happens through 
restoring a savepoint using 
the new parallism
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Implementation: Time-handling
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Time: Different Notions of Time
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Event Producer Message Queue Flink
Data Source

Flink
Window Operator

partition  1

partition  2

Event
Time

Ingestion
Time

Window
Processing

Time

Broker
Time



Time: Watermarks
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W(11)W(17)

11159121417122220 171921

Watermark
Event

Event timestamp

Stream (in order)
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W(11)W(20)

Watermark

991011141517

Event

Event timestamp

1820 192123

Stream (out of order)



Time: Watermarks in Parallel
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Source
(1)

Source
(2)

map
(1)

map
(2)

window
(1)

window
(2)

29
29

17

14

14

29
14

14

W(33)

W(17)

W(17)

A|30B|31

C|30

D|15

E|30

F|15G|18H|20

K|35

Watermark

Event Time
at the operator

Event
[id|timestamp]

Event Time
at input streams

Watermark
Generation

M|39N|39Q|44

L|22O|23R|37



Implementation: Queryable State
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Queryable State
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Traditional

Queryable State



Queryable State: Implementation
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Query Client

State
Registry

window(
)/

sum()

Job Manager Task Manager

ExecutionGraph

State Location Server

deploy

status

Query: /job/operation/state-name/key

State
Registry

window(
)/

sum()

Task Manager

(1) Get location of "key-partition"
for "operator" of" job"

(2) Look up
location

(3)
Respond location

(4) Query
state-name and key

local
state

register



State, Snapshots, Recovery
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stateful
operation

source /
transform

State index
(Hash Table
or RocksDB)

Events are persistent
and ordered (per partition / key)

in the log (e.g., Apache Kafka)

Events flow without replication or synchronous writes



State, Snapshots, Recovery
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Trigger checkpoint Inject checkpoint barrier

stateful
operation

source /
transform



State, Snapshots, Recovery
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Take state snapshot RocksDB:
Trigger state

copy-on-write

stateful
operation

source /
transform



State, Snapshots, Recovery
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Persist state snapshots Durably persist
snapshots

asynchronously

Processing pipeline continues

stateful
operation

source /
transform



Powerful Abstractions
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Process Function (events, state, time)

DataStream API (streams, windows)

Stream SQL / Tables (dynamic tables)

Stream- & Batch 
Data Processing

High-level
Analytics API

Stateful Event-
Driven Applications

val stats = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { … }

out.collect(…) // emit events
state.update(…) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

}

Layered abstractions to
navigate simple to complex use cases



Event Sourcing + Memory Image
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event log

persists events
(temporarily)

event /
command

Process

main memory

update local
variables/structures

periodically snapshot 
the memory



Event Sourcing + Memory Image
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Recovery: Restore snapshot and replay events 
since snapshot

event log

persists events
(temporarily)

Process



Distributed Memory Image
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Distributed application, many memory images.
Snapshots are all consistent together.


