Introduction to Stateful Stream
Processing with Apache Flink

Robert Metzger
@rmetzger_
robert@ververica.com

)
4
C

&

® ververica

Original creators of
Apache Flink®

()

N

VERVERICA
PLATFORM

Ververica Platform
Open Source Apache Flink
+ Application Manager

Apache Flink 101

& Apache Flink

= Apache Flink is an open source stream processing
framework

* Low latency APAC E

[] High throughput SOFTWARE FOUNDATION
- Stateful

. . ~dri i h
- Distributed roliatione o

(Real-time)

Transactions

> Events [) — Application
ﬁ —~

e @

10T "«

- Event Log

_—

Clicks % - é Database,
Ej - Eﬁ File System,
_—

Database, KV-Store
File System, Resources | Storage
KV-Store (K8s, Yarn, Mesos, ...) | (HDFS, S3, NFS, ...)

What is Apache Flink?

Data Stream
Setdh Processing

Processin g realtime results
from data streams

process static and
historic data

4

&

Event-driven
Applications

data-driven actions
and services

Stateful Computations Over Data Streams

Use Case: Streaming ETL

%

Periodic ETL is the traditional

approach
o External tool periodically
triggers ETL batch job

Data pipelines continuously

move data
o Ingestion with low latency
o No artificial data boundaries

Periodic ETL

Transactional Database /

Database « Filesystem
read Per|od|c wr/te
ETL Jo b
Data Pipeline / Real-time ETL
Real-time Events

@% Continuous Database /
icati > Filesystem
Application

ingest append

17T el Vi e

Use Case: Data Analytics

%

e Batch analytics is great for ad-hoc
queries
O Queries change faster than data
O Interactive analytics / prototyping

e Stream analytics continuously

processes data
o Data changes faster than queries
o Live / low latency results
© No Lambda architecture
required!

Batch Analytics
Database /
Recorded HDFS
Events @ @
read | Pperiodic Query / —
Application & write
Report
Stream Analytics
Real-time Database / Live Report /
Events Continuous K-V Store Dashboard
ingest Query / update
‘HIIID —* Application [T > -
read _E

»
»

=

Ll LAl
LIl LA\

Use Case: Event-driven applications

%

e Traditional application design
o Compute & data tier architecture
o React to and process events

o State is stored in (remote) database

e FEvent-driven application
o State is maintained locally
© Quaranteed consistency by
periodic state checkpoints
o Tight coupling of logic and data
(microservice architecture)
o Highly scalable design

Transactional Application

trigger .
Events— | Application |——— 3 Action

Transactional DB

Event-driven Application

trigger Action
—_—

Application

e (D "= B ey
& i —, o
, Applications
Event Log Writé “tvent Log

periodically write
asynchronous
checkpoints

Persistent
storage

Hardened at scale

o " . D
£2 aWS \’ capitalOhc comcast Criteol..

Alibaba.com Z) bouygues

EEEEEEE

-
el ay ’ 2 HUAWEI \@ lgﬂ ING
ERICSSON

otto group Feefinica - NEXT Te?#cﬁnr UBER yelp;: » zalando

Details about their use cases and more users are listed on Flink's website at https://flink.apache.org/poweredby.html

10

https://flink.apache.org/poweredby.html

Case Study: Single's Day

o Chinese Shopping Festival
. Very high peak load
100s millions records per second
o 100s thousands payments per o
second
o 10 TBs of managed state s15j!7Q§7 170 984 786
o 10s thousands of cores

e Flink used in various areas in the
process incl. payment, shipping,
realtime recommendations and the
giant dashboard

References
° https://www.ververica.com/blog/singles-day-2018-data-in-a-flink-of-an-eye
° https://medium.com/@alitech 2017/how-to-cope-with-peak-data-traffic-on-11-11-the-secrets-of-
alibaba-stream-computing-17d5e807980c

11

https://www.ververica.com/blog/singles-day-2018-data-in-a-flink-of-an-eye
https://medium.com/@alitech_2017/how-to-cope-with-peak-data-traffic-on-11-11-the-secrets-of-alibaba-stream-computing-17d5e807980c

Building blocks

Event Streams

real-time and
hindsight

The Core Building Blocks

State

complex
business logic

(Event) Time

consistency with
out-of-order data
and late data

Snapshots

forking /
versioning /
time-travel

13

%

Stateful Event & Stream Processing

val lines: DataStream[String]

env.addSource(new FlinkKafkaConsumer(..)) j}- Source

val events: DataStream[Event]

Transformation

lines.map((line) => parse(line)) }_

val stats: DataStream[Statistic] = stream
.keyBy("sensor"
.timeWindow(Time.seconds(5)) Transformation
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

@ }- Sink

Streaming
Dataflow

Window Sink

Source Transform ,
(state read/write)

Stateful Event & Stream Processing @

Source Filter / State Sink
Transform read/write

15

Stateful Event & Stream Processing @

Scalable embedded state
5

@ Access at memory speed &
scales with parallel operators

Stateful Event & Stream Processing @

Rolling back computation
Re-processin
P 5 Ei Re-load state

Reset positions -—
in input streams

17

Time: Different Notions of Time &

Flink Flink
Data Source Window Operator

Event Producer Message Queue

Time Processing
Time

18

Time: Event Time Example 9

= IAR=

VAR

Episode Episode Episode Episode Episode Episode Episode

1977 1980 1983 1999 2002 2005 2015

Processing Time

19

Recap: The Core Building Blocks

Event Streams State (Event) Time Snapshots
» g | consistency with forking /
real-time an compiex out-of-order data versioning /
hindsight business logic and late data time-travel

20

APIs

The APIs %

Analytics
N swemsat |
Stream- &
~Na

Event-Driven
Applications =

Process Function (events, state, time)

Process Function %

class MyFunction extends ProcessFunction[MyEvent, Result] {

// declare state to use in the program
lazy val state: ValueState[CountWithTimestamp] = getRuntimeContext().getState(..)

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]): Unit = {
// work with event and state

(event, state.value) match { .. }

out.collect(..) // emit events
state.update(..) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500)

def onTimer(timestamp: Long, ctx: OnTimerContext, out: Collector[Result]): Unit = {
// handle callback when event-/processing- time instant is reached

23

Data Stream API

%

val lines: DataStream[String] env.addSource(

new FlinkKafkaConsumer<>(..))

val events: DataStream[Event]

lines.map((line) => parse(line))

val stats: DataStream[Statistic] = stream
.keyBy("sensor")
.timeWindow(Time.seconds(5))
.sum(new MyAggregationFunction())

stats.addSink(new RollingSink(path))

24

Table APl & Stream SQL %

// Table API

val tapiResult: Table = tEnv.scan("sensors" // scan sensors table
.window(Tumble over 1.hour on 'rowtime as 'w) // define 1-hour window
.groupBy('w, 'room) // group by window and room

.select('room, 'w.end, 'temp.avg as 'avgTemp) // compute average temperature

SELECT room, TUMBLE_END(rowtime, INTERVAL '1' HOUR), AVG(temp) AS avgTemp
FROM sensors
GROUP BY TUMBLE(rowtime, INTERVAL '1' HOUR), room

25

Deployment & Integrations

Deployment

Master Image

I
I
I
I
4 I
I
I

I
1
v YARN, Mesos, Stand-alone cluster /'

«.eventador.io

27

Integrations %
ZXPULSAR
¢ Event lOgS: kafka ‘ll] amazon
o Kafka, Kinesis, Pulsar* , = KINESIS
. §99 [1TEIEDE)
e File systems: i amazon
o S3,HDFS,NFS,MapRFS,.. SHRSE
e Encodings: “"
o Avro, JSON, CSV, ORC, Parquet Q
e Databases: LD 2 :
o JDBC, HCatalog S é redis
e Key-Value Stores cassandra oo alasticsearch
uwr

o Cassandra, Elasticsearch, Redis*

28

Concluding...

The Apache Flink® Conference F LI N K 3
Berlin | October 7-9, 2019 Fo RWARD

Organized by & ververica

Early Bird ticket sales ends July 15th

#flinkforward

flink-forward.org

Q & A Get in touch via eMail: Get in touch via Twitter:
robert@ververica.com @rmetzger_

info@ververica.com @ApacheFlink

31

What's happening in Flink these days ... &

« INSERT INTO flink_sgl SELECT * FROM blink_sq|!

- Turning Table API into an API unified across batch DataSet |DAtaStEamy Table /SQL
and streaming (FLINK-11439) (deprecated)

« Integration with Hive ecosystem (FLINK-10556) e !

Runtime

Batch runtime improvements: Fine-grained recovery (FLINK-4256), more
schedulers (FLINK-10429), pluggable shuffle service (FLINK-10653)

Machine Learning Pipelines on Table API (FLIP-39)
Table API: Caching of intermediate results (.cache() API) (FLINK-11199)
Table API: Python support (FLINK-12308)

Implementation: State
Checkpointing

State, Snapshots, Recovery

Coordination via markers, injected into the streams

data stream

<+ newer records older records =
checkpoint checkpoint stream record
barrier n barrier n-1 (event)
part of part of part of

checkpoint n+1 checkpoint n checkpoint n-1

35

Master

Checkpoint data State Backend

Source 1: State 1:
Source 2: State 2:
Source 3: Sink 1: (pending)
Source 4: Sink 2: (pending)
Start checkpoint |
message H
1
H“\ Emit stream barriers
[\
11
11\
1
1

| Current position: 6791

| Current position: 7252

| Current position: 5589

| Current position: 6843

Starting
Checkpoint 36

Master

Checkpoint data State Backend
Source 1: 6791 State 1:

Squ!e 2: 7252 State 2: -
Bource 3: 5589 Sink 1: (pending)
{ Source 4: 6843

Sink 2: (pending)

M
L
1 /
\ /
\ R4
LN —
Ack. with

. . 4
Operator received barriers

age \ =
position 6791 \\ at each input l/ Writes a snapshot

\ \ of its state

Checkpoint
in Progress 37

Master

Checkpoint data State Backend

Source 1: 6791 State 1: ptrl *

Source 2: 7252 State 2: ptr2

7

Source 3: 5589 Sink 1: (pending) 1
_ —

Source 4: 6843 Sink 2: (pending)

T

I

Ack. with pointer?
to state

I
7
/
I
7
I

I i @— Emits next barrier

Checkpoint
in Progress 38

Master

Checkpoint data State Backend

Source 1: 6791 State 1: ptrl -
Source 2: 7252 State 2: ptr2

Source 3: 5589 Sink 1: ack!

Source 4: 6843 Sink 2: ack! RS
~
\;
N
\\
\~
\\
N,
\
\,
N\

\‘ Sink acknowledges
v checkpoint after
: receiving all barriers
1
]

]

1}

/

Checkpoint
Completed 39

Implementation: Stream SQL

Stream SQL: Intuition

—~
<4 - <§ - ¥ navAic . Continuous — > Dv_l'_:&t' g‘lml""

Stream / Table Duality

Table without Primary Key Table with Primary Key
e
2 8 tme |k |
- ———
‘ ; = op M 8,4 M ?,EB M s,Ic 2l 4,J:A M z,ia H_fﬂ—b

42

Stream SQL: Implementation

| g
?T&V , 5 g .
le®) _g\ b ;%:;
].T:"e-‘ — Cczch: \"‘E’gs%&\w«

=) — -
F«E;f* = Lm_

ot
| DeteStrecam |

Query Compilation

2 B

a

<{INSERT), *|UPDATE vy KEY), | DELETE by KEY)

|

{08 3 H B 20 W HC 10 M .20 M 0, 1) H -4 1 -

Differential Computation
(add/mod/del)

43

Implementation: Rescaling

44

Rescaling State / Elasticity @

= Similar to consistent hashing Key space

* Split key space into key groups .. Key group #2

= Assign key groups to tasks

Key group #4 Key group #3

45

Rescaling State / Elasticity

= Rescaling changes key group
assignment
« Maximum parallelism Q E

=
defined by #key groups -

= Rescaling happens through i
restoring a savepoint using
the new parallism

. e

Implementation: Time-handling

%

Time: Different Notions of Time

Flink Flink
Data Source Window Operator

Event Producer Message Queue

Time Processing
Time

48

Time: Watermarks

Stream (in order)

23] |21 201119 18|17 (|15 |14 |4 11| [10| O 9 |l 7

w(20) W(11)

Event
Watermark

Event timestamp

Stream (out of order)

|
21 [19 :

2017 2211217 14|, 12 9 |15 111 7

| |
W(17) W(11) X

Event
Watermark

Event timestamp 49

Time: Watermarks in Parallel

%

Watermark

é

W(:33)

(Q144 [v139] [m139] 0 |:> So(tir)ce

Watermark
Generation

!
([R|37] [O|23] [L|22] O |:> So(l;;ce

Event
[id|timestamp]

29 l 14

i d

14
Event Time

at input streams

W(17)
5/
17 : 14
e g
W(17)

Event Time

at the operator
50

Implementation: Queryable State

51

Queryable State

realtime
queries

l Traditional

Flink event time
windows

realtime
queries

Archive
Database

52

Queryable State

Queryable State: Implementation @

Query: /job/operation/state-name/key

(4) Query

(1) Get location of "key-partition”
for "operator" of" job" =) state-name and key
3

a Respond location
. s N\ A
State Location Server
(2) Look up [,] State register
location </ Registry o
ExecutionGraph

N deplo 4) 4)

~ proy | local
<

status state

- J A\ = /)N /)

Job Manager Task Manager Task Manager s

State, Snapshots, Recovery

Events flow without replication or synchronous writes

] H A
| Emmm(=
]
| mEEE() g -
] H A
Events are persistent
and ordered (per partition / key)
in the log (e.g., Apache Kafka) source /
transform

State index
(Hash Table
or RocksDB)

stateful
operation 54

State, Snapshots, Recovery

Trigger checkpoint Inject checkpoint barrier

A
e (o

| Emmm(=

| mEEE() g

source /
transform

stateful
operation 55

State, Snapshots, Recovery @

RocksDB:
Take state snapshot Trigger state

copy-on-write

(IIIIO N
. 1
| mEEE() g C :
|
L] H B !
|
|
source / stateful
transform

operation 56

State, Snapshots, Recovery @

Persist state snapshots Processing pipeline continues Durably persist
snapshots

\ asynchronously
[l H B
| Emmm(= .

| mEEE() g -
] H B
source / stateful
transform

operation 57

Powerful Abstractions %

Layered abstractions to
navigate Simple to Complex use cases SELECT room, TUMBLE_END(rowtime, INTERVAL '1' HOUR), AVG(temp)

FROM sensors
GROUP BY TUMBLE(rowtime, INTERVAL '1l' HOUR), room

High-level
Analytics API

val stats = stream

_ T

Stream- & Batch
Data Processing

.timeWindow(Time.seconds(5))
.sum((a, b) -> a.add(b))

Stateful Event- Process Function (events, state, time)
Driven Applications

def processElement(event: MyEvent, ctx: Context, out: Collector[Result]) = {
// work with event and state
(event, state.value) match { .. }

out.collect(..) // emit events
state.update(..) // modify state

// schedule a timer callback
ctx.timerService.registerEventTimeTimer(event.timestamp + 500) 58

Event Sourcing + Memory Image

%

periodically snapshot
the memory

event /
command

) e

persists events
(temporarily)

main memory

A

| | A | |
7N
H
1
1
!
1

-7

| B update local

variables/structures

Process

59

Event Sourcing + Memory Image &

Recovery: Restore snapshot and replay events
since snapshot

Ll =+ |

] (event log (*llll

persists events
(temporarily)

Process

60

Distributed Memory Image

%

Distributed application, many memory images.
Snapshots are all consistent together.

LI =] |

Ty

LTl |

——

' 4

(I

LI+l |

61

