
Practical API Design

June 2019

2

Ronnie Mitra
ronnie.mitra@publicissapient.com
@mitraman



Our scale Our clientsOur scale Our clientsOur scale Our clientsOur scale Our clientsOur scale Our clients Industry Recognition

Serving youServing youServing youServing youServing you

Forrester Global Digital Business 
Transformation Accelerators – Q1 2019 

Market presence* 

Stronger strategyWeaker strategy

Weaker 
current 

offering

Stronger 
current 

offering

Challengers Contenders
Strong 

performers Leaders

DXC Technology

Tata Consultancy Services
Infosys

Cognizant

Atos

Publicis 
SapientCapgemini

Accenture

Wipro

EY

KPMG

PwC

McKinsey 
& Company

IBM

Deloitte

A startup mindset and agile methods to unlock value in ways that 
delight your customers and improve their operational effectiveness

A transformation approach that is grounded in a view of both the 
company and the customer simultaneously

A unique fusing of strategy and consulting, experience and 
engineering with an enduring culture of problem-solving creativity

20,000
passionate people

50+
offices globally connect

30
years of digital pioneering 
and customer innovation

20,000
passionate people

50+
offices globally connect

30
years of digital pioneering 
and customer innovation

20,000
passionate people

50+
offices globally connect

30
years of digital pioneering 
and customer innovation

20,000
passionate people

50+
offices globally connect

30
years of digital pioneering 
and customer innovation

20,000
passionate people

50+
offices globally connect

30
years of digital pioneering 
and customer innovation

Publicis Sapient | Digital Business Transformation
As a digital business transformation partner of choice, we’ve spent nearly three decades utilising the disruptive 
power of technology and ingenuity to help digitally enable our clients' business in their pursuit of next



Ronnie Mitra

4



The Scope of API Design

5

API

Interface
Model Implementation Instance Supporting

Assets & Tools



Significant API Design Costs

6

Interface Design Cost API Engineering Cost Client Engineering 
Cost

Change Cost

Safety Cost

After Publishing



7 Practical Techniques
For API Design



Technique #1
Set The Right Design Goals



Typical API Design Goals

9

Access to Data & Services



Typical API Design Goals

10

Access to Data & Services

Increased Developer Productivity

Reduced Reliance on Staff Reduced Learning Time



Typical API Design Goals

11

Access to Data & Services

Increased Developer Productivity

Reduced Reliance on Staff

Increased Conversion Rate

Reduced Learning Time

Talent Retention

Brand Credibility



Typical API Design Goals

12

Access to Data & Services

Increased Developer Productivity

Reduced Reliance on Staff

Increased Conversion Rate

Reduced Learning Time

Design costs
increases as
we move up

Talent Retention

Brand Credibility

Functional
Focus

Usability
Focus

Experience
Focus



Calculating The Cost-Benefit of API Design 

13

https://humanfactors.com/coolstuff/roi_increase_productivity.asp

https://humanfactors.com/coolstuff/roi_increase_productivity.asp


The Kano Model

14

user
satisfaction

feature implementation

Performance Features
(“known improvements”)

Attractive Features
(“delighters”)

Basic Features
(“tablestakes”)



Invest in Attractive Features when
API-X is a key success factor

15

user
satisfaction

Attractive Features
(“delighters”)

Increased Conversion Rates

Brand Marketability

Talent Retention



Focus on Convention When API-X 
is not the priority

16

user
satisfaction

feature implementation

Performance Features
(“known improvements”)

Attractive Features
(“delighters”)

Basic Features
(“tablestakes”)

Conventional
Zone



The Kano Model:
Beware of Feature Degradation

17

user
satisfaction

feature implementation

Performance Features
(“known improvements”)

Attractive Features
(“delighters”)

Basic Features
(“tablestakes”)



Use Imitation as a Shortcut to a Conventional API

Save time by using another API design as inspiration

Considerations:

• Who are the API’s users?

• What domain does it operate in?

• What is it like to use?

18

GET /changes
GET /changes/watch



Technique #2
Sketch & Prototype Iteratively



Sketch & Prototype

20

Set
Goal

Research Sketch Prototype Build Publish



Technique #3
Heuristic Evaluation



API Design Reviews

Just like a code review, your API design can benefit from evaluation by other experts and your peers.

22



API Design Reviews

Just like a code review, your API design can benefit from evaluation by other experts and your peers.

23

Practical Challenges:
• Access to API design experts 

• Getting comprehensive feedback

• Collating analysis from multiple experts



Jakob Neilsen and Rolf Molich: 10 Usability Heuristics for User Interface Design

1. Visibility of System Status

2. Match Between System and the Real World

3. User Control and Freedom

4. Consistency and Standards

5. Error Prevention

6. Recognition rather than recall

7. Flexibility and Efficiency of Use

8. Aesthetic and Minimalist Design

9. Help Users Recognize, Diagnose, and Recover from Errors

10. Help and Documentation

24



7 Usability Heuristics for API Design

1. Visibility of System Status

2. Match Between System and the Real World

User Control and Freedom

3. Consistency and Standards

4. Error Prevention

Recognition rather than recall

5. Flexibility and Efficiency of Use

Aesthetic and Minimalist Design

6. Help Users Recognize, Diagnose, and Recover from Errors

7. Help and Documentation

25



5 Usability Heuristics for Machine Interface Design

1. Visibility of System Status

Match Between System and the Real World

User Control and Freedom

2. Consistency and Standards

3. Error Prevention

Recognition rather than recall

4. Flexibility and Efficiency of Use

Aesthetic and Minimalist Design

5. Help Users Recognize, Diagnose, and Recover from Errors

Help and Documentation

26



5 Usability Heuristics for Machine Interface Design

1. Visibility of System Status

2. Consistency and Standards

3. Error Prevention

4. Flexibility and Efficiency of Use

5. Help Users Recognize, Diagnose, and Recover from Errors

27

How easy is it to understand what is 
happening?



5 Usability Heuristics for Machine Interface Design

1. Visibility of System Status

2. Consistency and Standards

3. Error Prevention

4. Flexibility and Efficiency of Use

5. Help Users Recognize, Diagnose, and Recover from Errors

28

Are interface and data models internally 
consistent?

Does the API adhere to specifications and 
organizational standards?



5 Usability Heuristics for Machine Interface Design

1. Visibility of System Status

2. Consistency and Standards

3. Error Prevention

4. Flexibility and Efficiency of Use

5. Help Users Recognize, Diagnose, and Recover from Errors

29

Are the interface model and data model 
overly complicated?

Is there avoidable tight coupling that will 
cause errors when things change?



5 Usability Heuristics for Machine Interface Design

1. Visibility of System Status

2. Consistency and Standards

3. Error Prevention

4. Flexibility and Efficiency of Use

5. Help Users Recognize, Diagnose, and Recover from Errors

30

Does the interface model support both
beginner and advanced use cases?

Are their optimizations and accelerators 
available?



1. Visibility of System Status

2. Consistency and Standards

3. Error Prevention

4. Flexibility and Efficiency of Use

5. Help Users Recognize, Diagnose, and Recover from Errors

Is error information accurate and helpful?

Does it address both human and machine 
concerns?

5 Usability Heuristics for Machine Interface Design

31



Example of a Heuristic Analysis

32

REQUEST

RESPONSE

Visibility:

• “Use 202 instead”
• “Provide a link where client can check job status 

and add some info about job length”

Consistency & Standards:

• “Use our standardized words for job status (“in-
progress”)”



Find Usability Problems by Combining Results

33

Reviewer A Reviewer B Reviewer C Reviewer D

Visibility of System Status

Consistency & Standards

Error Prevention

Flexibility & Efficiency of Use

Help Users Recognize, 
Diagnose an Recover 



Technique #4
Write Code



Technical Validation

Writing Code in the Design Phase

35

Machine
Interface
Model

Proof of Concept
API Implementation

Iterative sketching



Design Validation Technical Validation

Writing Code in the Design Phase

36

Machine
Interface
Model

Proof of Concept
API Implementation

Proof of Concept
Client Code

Iterative sketching



Technique: Write Code

37

“Code the use-cases against your API 
before you implement it, even before you 
specify it properly”
-- Joshua Bloch

Photo Source: https://www.ideo.com/people/bill-moggridgehttps://github.com/jbloch



Technique: Write Client Code

38

Write code from the perspective of your users early in the API design cycle.



Tips for Using Client Code Effectively

39

Be your user
Utilize languages, frameworks and techniques that you think your users would use.

Unit tests aren’t enough
Write code that accomplishes a goal from a user perspective – not code that tests a spec.

Focus on insight not syntax 
Don’t get caught investing too much time making code compile or worrying about code completeness.



Technique #5
Participatory Design



Participatory Design 
High Fidelity – Co-Design Team

42

Frontend Developer

API Designer
UX Designer

Backend Developer

Shipping Service
Machine Interface Model



Participatory Design 
Low Fidelity – Blank Paper Exercise

43

Frontend Developer

Shipping Service Sketch

Design the interface you
want to use

Shipping Service
Machine Interface
Model



Technique #6
Choose a Style That Fits



“REST” (The CRUD Style)

46

API



“REST” (The CRUD Style)

47

API

Shared understanding of data model 

Shared understanding of object address space

Some RPC endpoints



”REST” (The CRUD Style)

The API is a nested set of ”CRUD”able objects
Interface design is “crafted”
You design the objects, relationships 
and query model

SystemClient
App



”REST” (The CRUD Style): Cost Impacts

System

Increases user learning costs 
(crafted API)

Increases design costs 
(crafted API)

Increases cost of future changes 
(coupling to data model and address 
space)

Client
App



”REST” (The CRUD Style): When I Like To Use It

When I want to deliver a conventional API 
experience
When I need to provide an easily usable
interface
When I’m targeting client developers who are 
not in our team/organization

SystemClient
App



GraphQL (The Query Style)

APIApp

Fixed
RPC 
endpoint

Shared
Data Model



GraphQL (The Query Style)

The API is a data source
Interface design is standardized
You design the data model and the RPC endpoints

Schema SystemClient
App



GraphQL (The Query Style): Cost Impacts

Schema System

Increases learning costs 
(understand data model)

Increases engineering costs 
(data pipe architecture)

Increases cost of future changes 
(coupling to data model)

Client
App



GraphQL (The Query Style): When I Like To Use It

When the client developers are in in my team
When my client developers need greater flexibility 
and autonomy
When I want to present something new to my users

Schema SystemClient
App



API Styles – User Metaphors

55

Tunnel-RPC Style

CRUD Style

Hypermedia Style

Event Driven Style

Query Style

The API is a local library

The API is a set of data objects

The API is a website

The API is a database

The API is a notification message



Technique #7
Make Practical Design Decisions



Example

“What should we return when GET /songs?genre=classical 
doesn’t produce a match?”

57



Resolving API Design Decisions

1. How reversible is this design decision?

If its easy to reverse we can afford to make a less optimal decision and improve it later.
This is debt that is easy to pay back.

58

“Once we decide on this, it’s going to be difficult to change.
We’d have to release a new version.”



Resolving API Design Decisions

2. What do the specifications and standards say?

If there are clear rules, endeavor to follow them.

59

“We’ve read RFC 7231, now we are starting to think 404 is 
the way to go.”



Resolving API Design Decisions

3. What would the client code look like?

Write client code to test your hypothesis and gain insight

60

“Actually, now it seems like a 200 with an empty collection 
makes the most sense!”



Seven API Design Techniques

1. Manage Your Debt

2. Build a Conventional Product (when it makes sense)

3. Perform Heuristic Evaluations

4. Write Code

5. Use Participatory Design

6. Choose a style that fits

7. Make Practical Design Decisions



Bill Moggride on Design

62

“If there’s a simple, easy 
design principle that binds 
everything together, it’s 
probably about starting 
with the people”

Photo Source: https://www.ideo.com/people/bill-moggridge



Practical API Design

June 2019

63

Ronnie Mitra
ronnie.mitra@publicissapient.com
@mitraman


