
@allardbz

Event Storage in AxonServer
How does it work?

Allard Buijze
CTO & Founder, AxonIQ

@allardbz

Why?!

@allardbz

Location transparency

A Component should not be aware, nor make any
assumptions, of the location of Components it

interacts with

A component should neither be aware of nor make any
assumptions about the location of components it interacts with.

Location transparency starts with good API design

(but doesn’t end there)

@allardbz

Microservices Messaging
Commands Events Queries

Route to single handler
Use consistent hashing

Provide result

Distribute to all logical handlers
Consumers express ordering req’s

No results

Route with load balancing
Sometimes scatter/gather

Provide result

"Event" and “Message" is not the same thing

@allardbz

Events…
• Events retain their value of time

• How do we guarantee atomic publication of
events and state change commits?

• How do we guarantee that our events are a

truthful representation of an entity’s history

@allardbz

Event-Driven
Architecture

Event Sourcing

Event Sourcing

in which Events are at the
heart of the persistence /
data storage architecture

is a specific type of Event-
Driven Architecture

@allardbz

Event Sourcing
… is about capturing …

the truth,
the whole truth,

nothing but the truth

@allardbz

State storage Event Sourcing

Event Sourcing

id: 123
items

1x Deluxe Chair - € 399
status: return shipment rcvd

OrderCreated (id: 123)
ItemAdded (2x Deluxe Chair, €399)
ItemRemoved (1x Deluxe Chair, €399)
OrderConfirmed
OrderShipped
OrderCancelledByUser
ReturnShipmentReceived

@allardbz

Business reasons Technical reasons

Why use event sourcing?

•  Auditing / compliance /
transparency

•  Data mining, analytics:
value from data

•  Guaranteed completeness of raised
events

•  Single source of truth
•  Concurrency / conflict resolution
•  Facilitates debugging
•  Replay into new read models (CQRS)
•  Easily capture intent
•  Deal with complexity in models

@allardbz

What's an "event store"?
In the architecture of an event-sourced application, the event store is
the database system used to store the events.

In terms of implementation, this could be

•  General purpose RDBMS technology (Oracle, MySQL, Postgres, etc.)
•  General purpose NoSQL technology (Mongo, Cassandra, etc.)
•  Specialized event store technology (AxonServer, Greg Young's

EventStore, PumpkinDB)

@allardbz

Event store in context

Application Event store

Past events

New events

•  Works well for processing changes (Commands)

•  Does not work well for, say, finding all orders
with total value > EUR 100

@allardbz

CQRS
Command-Query Responsibility Segregation

Command
Handler Event store

Past events

New events

Projection
database

Query Handler

New events

Projection logic

Updates
Selection
criteria

Data

@allardbz

Event store requirements

@allardbz

Event Storage Requirements

Read Events Write Events

All for an aggregate
 (event sourced repository)

All since point in time
 (for read model projection)

Read back in write order

Append events

Insert events at random point

Update events

Delete events

Append Events

Ad-hoc queries
 (for debug, monitoring, support)

@allardbz

Event Storage Requirements

InvestmentAccountCreated(balance = 0, limit = 0)

MoneyDepositedToAccount(amount = 1000)

Id=8721
Seq = 0

Id=8721
Seq = 1

MoneyWithdrawnFromAccount(amount = 600)
Id=8721
Seq = 2

@allardbz

Event Storage Requirements

InvestmentAccountCreated(balance = 0, limit = 0)

MoneyDepositedToAccount(amount = 1000)

Id=8721
Seq = 0

Id=8721
Seq = 1

MoneyWithdrawnFromAccount(amount = 600)
Id=8721
Seq = 2

MoneyWithdrawnFromAccount(amount = 700)
Id=8721
Seq = 2

@allardbz

Event Storage Requirements

Read Events

All for an aggregate

All since point in time

Read back in write order

Validate aggregate sequence
numbers

 (consistency)

Append Events

Ad-hoc queries

@allardbz

Event Storage Requirements

InvestmentAccountCreated(balance = 0, limit = 0)

MoneyDepositedToAccount(amount = 1000)

Id=8721
Seq = 0

Id=8721
Seq = 1

Command: buy 5 shares of XYZ Corp @ 100

MoneyWithdrawnFromAccount(amount = 500)
Id=8721
Seq = 2

SharesAddedToAccount(symbol = ‘XYZ’, n = 5)
Id=8721
Seq = 3

@allardbz

Event Storage Requirements

Read Events

All for an aggregate

All since point in time

Read back in write order

Validate aggregate sequence
numbers

 (consistency)

Append Events

Append multiple events at once
 (atomicity)

Only read committed events
 (isolation)

Committed events protected against
loss

 (durability)

Ad-hoc queries

@allardbz

Event Storage Requirements

BankAccountCreated(balance = 0, limit = 0)

MoneyDepositedToAccount(amount = 1000)

Id=8721
Seq = 0

Id=8721
Seq = 1

MoneyDepositedToAccount(amount = 500)
Id=8721
Seq = 9103

MoneyWithdrawnFromAccount(amount = 700)
Id=8721
Seq = 9102

Using the bank account for 10 years

@allardbz

Event Storage Requirements

BankAccountCreated(balance = 0, limit = 0)

MoneyDepositedToAccount(amount = 1000)

Id=8721
Seq = 0

Id=8721
Seq = 1

MoneyDepositedToAccount(amount = 500)
Id=8721
Seq = 9103

MoneyWithdrawnFromAccount(amount = 700)
Id=8721
Seq = 9102

BankAccountSnapshot(balance = 5000)
Id=8721
Seq = 9080

@allardbz

All since point in time

Read back in write order
Ad-hoc queries
Only read committed events

 (isolation)

Event Storage Requirements

Read Events

All for an aggregate Validate aggregate sequence
numbers

 (consistency)

Append Events

Append multiple events at once
 (atomicity)

Read Events/Snapshots Append Events/Snapshots

Append snapshots

Committed events protected against
loss

 (durability)

•  Latests snapshot + later events

•  All events

@allardbz

Event Storage Requirements

All events for all bank accounts for 10 years
Billions of events

@allardbz

Append Events/Snapshots Read Events/Snapshots

All since point in time

Read back in write order

Only read committed events

•  Latests snapshot + later events

•  All events

Event Storage Requirements

All for an aggregate Validate aggregate sequence
numbers
Append multiple events at once

Append snapshots

Committed events protected against
loss

Constant performance as a function
of storage size Optimized for recent events

Ad-hoc queries

@allardbz

Event Storage Requirements

Node 1

Command handler
Node 2

Read model

Event store

@allardbz

Event Storage Requirements

Node 1

Command handler
Node 2

Read model

Event store

@allardbz

Event Storage Requirements

Node 1

Command handler
Node 2

Read model

Event store

Message Bus

@allardbz

Event Storage Requirements

Node 1

Command handler
Node 2

Read model

Event store

@allardbz

Append Events/Snapshots Read Events/Snapshots

All since point in time

Read back in write order

Only read committed events

•  Latests snapshot + later events

•  All events

Event Storage Requirements

All for an aggregate Validate aggregate sequence
numbers
Append multiple events at once

Append snapshots

Committed events protected against
loss

Constant performance as a function
of storage size Optimized for recent events

Ad-hoc queries

, pushing new ones

@allardbz

Append Events/Snapshots Read Events/Snapshots

All since point in time

Read back in write order

Only read committed events

•  Latests snapshot + later events

•  All events

Event Storage Requirements

All for an aggregate Validate aggregate sequence
numbers
Append multiple events at once

Append snapshots

Committed events protected against
loss

Constant performance as a function
of storage size

Optimized for recent events

Ad-hoc queries

•  pushing new ones

@allardbz

Incumbents Contenders

Event store options

•  RDBMS (any vendor)
•  MongoDB

Generic
•  Kafka
•  Cassandra

Built-for-purpose
• Greg Young's

EventStore

• PumpkinDB

@allardbz

Pros
•  Well established tech
•  Transactionality

RDBMS

@allardbz

RDBMS scalability
•  Smaller % of db in mem buffer

•  No mechanism to provide rapid
access to recent events

•  Maintaining B-tree indices
becomes more expensive

@allardbz

Append Events/Snapshots Read Events/Snapshots

All since point in time

•  Latests snapshot + later events

•  All events

All for an aggregate Validate aggregate sequence
numbers
Append multiple events at once

Append snapshots

Committed events protected against
loss

Constant performance as a function
of storage size

Read back in write order
Only read committed events
Optimized for recent events

•  Pushing new events

@allardbz

Pros
•  Well established tech
•  Transactionality

RDBMS

Cons
•  Scalability problems
•  No (clean) event push

@allardbz

Pros
•  Horizontal scalability

through sharding
•  Analysis on events

MongoDB

@allardbz

Document

Events MongoDB

@allardbz

Document

Events MongoDB

=

@allardbz

Document

Events MongoDB

=

Document =

@allardbz

Document

Events MongoDB

=

@allardbz

Append Events/Snapshots Read Events/Snapshots

All since point in time

•  Latests snapshot + later events

•  All events

All for an aggregate Validate aggregate sequence
numbers
Append multiple events at once

Append snapshots

Committed events protected against
loss

Constant performance as a function
of storage size

Read back in write order
Only read committed events
Optimized for recent events

•  Pushing new events

@allardbz

Pros
•  Horizontal scalability

through sharding
•  Analysis on events

MongoDB

Cons
•  Document transactions

•  No (easy) event push

•  No global sequence #

@allardbz

Pros
•  Messaging focussed
•  Extremely scalable

Kafka

@allardbz

A

A

C

D

D

B

B

B

E

F

A

Aggregate id

@allardbz

A

A

C

D

D

B

B

B

E

F

A

B

B

B

@allardbz

A

A

C D

D

B

B

B A

 Topic A Topic B Topic C Topic D

@allardbz

Topic

(logical, spanning multiple
machines)

Partition
(physical on a specific

machine)

1

1 … n

Has an associated
directory

Segment

1

1 … n

Has a log and index
file

This doesn’t scale to
millions of

aggregates!

@allardbz

Append Events/Snapshots Read Events/Snapshots

All since point in time

•  Latests snapshot + later events

•  All events

All for an aggregate Validate aggregate sequence
numbers
Append multiple events at once

Append snapshots

Committed events protected against
loss

Constant performance as a function
of storage size

Read back in write order
Only read committed events
Optimized for recent events

•  Pushing new events

@allardbz

Pros
•  Messaging focussed
•  Extremely scalable

Kafka

Cons
•  Not scalable in

#aggregates

in #total events

@allardbz

Pros
•  Extremely scalable
•  Multiple global datacenters
•  Peer to peer
•  Flexible, tunable consistency

Cassandra

@allardbz

InvestmentAccountCreated(balance = 0, limit = 0)

MoneyDepositedToAccount(amount = 1000)

Id=8721
Seq = 0

Id=8721
Seq = 1

MoneyWithdrawnFromAccount(amount = 600)
Id=8721
Seq = 2

MoneyWithdrawnFromAccount(amount = 700)
Id=8721
Seq = 2

@allardbz

Node B

Node A

0

1

0

1

X 2 Y 2

@allardbz

INSERT	INTO	events(aggId,	aggSeqNo,	payload)

VALUES(‘a’,		2	,	...)

IF	NOT	EXISTS

	

@allardbz

INSERT	INTO	events(aggId,	aggSeqNo,	payload)

VALUES(‘a’,		2	,	...)

IF	NOT	EXISTS

	

“Behind the scenes, Cassandra is making four round trips between a
node proposing a lightweight transaction and any needed replicas in
the cluster to ensure proper execution so performance is affected.
Consequently, reserve lightweight transactions for those situations
where they are absolutely necessary; Cassandra’s normal eventual
consistency can be used for everything else.”

Source: https://docs.datastax.com - our
highlighting

@allardbz

Append Events/Snapshots Read Events/Snapshots

All since point in time

•  Latests snapshot + later events

•  All events

All for an aggregate Validate aggregate sequence
numbers
Append multiple events at once

Append snapshots

Committed events protected against
loss

Constant performance as a function
of storage size

Read back in write order
Only read committed events
Optimized for recent events

•  Pushing new events

@allardbz

Pros
•  Extremely scalable
•  Multiple global datacenters
•  Peer 2 peer
•  Flexible, tunable consistency

Cassandra

Cons
•  Can’t guarantee event store

consistency efficiently

@allardbz

“EventStore” by Greg Young PumpkinDB

Built-for purpose event stores?

•  Written in .NET, and
generally seen as part
of .NET ecosystem

•  Places heavy emphasis on
projection logic (JavaScript)
inside the event store.

•  Separate 'database
programming environment'
inspired by M/MUMPS

•  Lots of logic would have to
implemented in
"PumpkinScript" rather than
Java.

@allardbz

Architecture and features

@allardbz

AxonServer
• Built ‘from scratch’ in Java.
• Purpose-built for event sourcing
• Manages files directly - no underlying database

system.
• Open interfaces based on HTTP+JSON and gRPC
• Drop-in event store implementation for Axon

Framework

@allardbz

tim
e

Append-only by design

@allardbz

tim
e Event-stream split into

segments

@allardbz

tim
e

events snapshots

Built-in support for
snapshots

@allardbz

tim
e

Data Index
Bloom-

filter

In each segment, we can
efficiently search on
aggregate id + seq no

@allardbz

Searching for
Aggregate’s events goes

backwards in time

search

tim
e

@allardbz

Recent segments are kept
in-memory

search

tim
e

@allardbz

@allardbz

Support for ad-hoc queries,

through a GUI and an API

@allardbz

Support for ad-hoc queries,

through a GUI and an API

@allardbz

Node 1 Node 2 Node 3

Master

Client

Clustering based on
floating single-master

with write quorum

@allardbz

Node 1 Node 2 Node 3

Client

Clustering based on
floating single-master

with write quorum

Master

@allardbz

Node 1 Node 2 Node 3

Client

Clustering based on
floating single-master

with write quorum

Master

@allardbz

Enterprise

sales@axoniq.io

How do I get started?

@allardbz

How do I get started?

axoniq.io/download

