

Microservice Message
Routing on Kubernetes
Frans van Buul
AxonIQ

About me About this presentation

Introductions
• Evangelist at AxonIQ, the new

company around Axon Framework.

• Prior roles
• Presales architect for Hewlett Packard /

Fortify
• Java developer at Trifork and others
• Security auditor at PwC

• Why microservices? Why
Kubernetes?

• A tiny sample app.
• Splitting that up and deploying it as

message-exchanging microservices
on Kubernetes.

Agility Scalability

Why microservices?

• Deploy new business
functionality rapidly.

• Agile, Scrum, DevOps, ….

• Have the ability to scale out
as business demand grows.

(and why not a simple monolith?)

Why Kubernetes?

We want to deploy
microservices –
many of them

They need isolation –
but no separate

machines So use containers –
Docker being

standard choice.

How to manage running
many containers, their

connections, load
balancing, scaling etc.?

Pods

Containers

Kubernetes  
overview

Kubernetes cluster 
 
 Worker node

(VM)
Worker node

(VM)
Worker node

(VM)
Worker node

(VM)

Install yourself, use Minikube, managed through GCP, AWS or Azure, 
or use Pivotal's PKS

Workload +
Controller

Services Volumes

Super Simple Sample System: Gift Cards

• Gift cards get issued at
a certain initial value. 

• Each time they are
used to buy something
("redeemed") the
remaining value is
adjusted.

https://github.com/AxonIQ/giftcard-demo-series

https://github.com/AxonIQ/giftcard-demo-series

Data store
Monolith

GiftCard systemBrowser

Data store
Monolith

GiftCard systemBrowser

How to transform our monolith into a agile, scalable,
microservices system running on Kubernetes?

1. Decide on component split. 2. Requirements for messaging
between the components?

3. Practical implementation
with Axon Framework, AxonHub, Spring Boot, Docker, Kubernetes, Google Cloud Platform

Data store
Monolith

GiftCard systemBrowser

Data store
Business

LogicBrowser GUI

This is still a very broad
functionality (as the system

grows). Not micro.

Data store
Business

LogicBrowser GUI Data
Access

This doesn't offer clear advantages.
It has very clear disadvantages.

CRUD-type operations,
probably over JSON/

HTTP
Native SQL or NoSQL
database commands

Data store
Business

LogicBrowser GUI

Data storeRedeemBrowser GUI

Issue

Report

Actual agility and scalability will be limited by having the
single data store.

Let's look at 2 pretty old ideas

… that are really useful in this context.

Idea Advantages

Command-Query Responsibility Segregation (CQRS)

• Separate datastores for processing
commands (changing state) vs.
queries (providing info).

• Query simplicity
• Optimal technology choice
• Easily scalable query side.
• Less workload on command side.

Command
handlers

Query
handlers

Data storeData store

Events

UI

Idea Advantages

Domain-Driven Design (DDD) and Aggregates

• Use DDD to align your system
architecture with the domain.

• Use DDD's concept of "Aggregate"
to create consistency boundaries
inside a model.

• Broadly: having your microservices
align with a domain model helps
make them independently
evolvable.

• Aggregates help size command-
side microservices:
• 2 aggregates should never "have to

be" in the same service
• 1 aggregate should not be "spread

across" multiple services

Data store
Business

LogicBrowser GUI

Data store
GiftCard

Aggregate

Browser GUI

Data store
GiftCard
Report

Queries

Commands

Events

Data store
GiftCard

Aggregate

Browser GUI

Data store
GiftCard
Report

Of course we want to
scale this out now!

How to set up actual
exchange of messages?

Queries

Commands

Events

Message requirements
Generic requirements to make this work at scale:

• Fast, efficient, asynchronous
• Some form of load balancing
• Dynamic scaling of nodes

There are also a number of specific requirements for the 3
message stereotypes command, event and query!

Command messages
• Route to a single handler

instance (load balancing)
• Associated response

required by client (success/
failure).

• Use consistent routing
based on aggregate id

Event messages
• In this case, each event

should lead to 1 update on
data store (competing
consumer).

Event messages
• The general rule: handled

once by every logical event
handler.

Event messages
• The general rule: handled once

by every logical event handler.
• Parallel processing is desirable,

but should follow a sequencing
policy.

Event stream

1 2 3 4 1 2
3

4

• "3" may get processed before "2"
• If "2" is "Create Card X" and "3" is

"Redeem Card X" this may fail

Event messages
• The general rule: handled once

by every logical event handler.
• Parallel processing is desirable,

but should follow a sequencing
policy.

• Event replay is a very
convenient feature to initialize
new read models.What if this is

introduced while the
system is already in

use?

Query messages
• Route to a single handler

instance (load balancing)
• Associated response

required by client.
• More advanced query

patterns could also occur
(scatter-gather).

Generic Stereotype-specific

Message requirements

• Fast, efficient, asynchronous
• Some form of load balancing
• Dynamic scaling of nodes

• Commands: single
execution consistent routing,
responses

• Events: processed once per
logical handler, sequencing
policy, no responses, replay

• Queries: load balancing,
responses, usually (not
always) executed once.

Data store
Monolith

GiftCard systemBrowser

How to transform our monolith into a scalable, agile
microservices system running on Kubernetes?

1. How to break it up? 2. Requirements for messaging
between the components?

3. Practical implementation
with Axon Framework, AxonHub, Spring Boot, Docker, Kubernetes, Google Cloud Platform

Axon Framework
• Open source Java Framework.
• Started 7 years ago.
• 800k+ downloads, 50% of which in the past 6 months.
• Started out as "CQRS Framework", currently used a lot for

microservices.
• Key principle: location transparency

Location transparency in Axon
Application's

@CommandHandler 
methods (GiftCard Aggregate)

<<interface>>
CommandBus

register to

<<class>>
SimpleCommandBus

implements

Commands as illustration – Queries and Events work similarly

<<class>>
AsyncCommandBus

implements

<<class>>
DistributedCommandBus

Code that needs to execute a
commands (GiftCard GUI)

send to
send to

implements

Practical distribution with Axon

Commands Events Queries

Until recently

SpringCloud + HTTP
or

JGroups

Either AMQP
or

tracking a database table

No standard functionality;
typically custom REST

interface with HTTP load
balancing.

Complex to set up correctly.
Doesn't meet all requirements.

Practical distribution with Axon

Commands Events Queries

SpringCloud + HTTP
or

JGroups

Either AMQP
or

tracking a database table

No standard functionality;
typically custom REST

interface with HTTP load
balancing

or
AxonHubCommandBus

or
AxonHubEventBus

or
AxonHubQueryBus

AxonHub essentials
• Server system, together with open source client/driver.
• Unified messaging for all 3 stereotypes
• Intelligent: near-zero configuration

How does it work?
When an application has an AxonHub*Bus,
two things happen: 

1. When that application puts a
message on the bus, it will be
sent to AxonHub for further
processing. 

2. The application will actively inform
AxonHub about the
@CommandHandlers,
@QueryHandlers and
@EventHandlers it has.

In combination with  

• AxonHub's understanding of
message meta-data and routing
patterns,

• 2-way gRPC connections
 
this allows fully automatic routing
and monitoring / management
functionality.

AxonHub and AxonDB
• Events go through AxonHub

doesn't store events itself – it
needs an event store for that.

• AxonDB is AxonIQ built-for-
purpose event store. Axon  

Hub

Axon  
DB

Kubernetes deployment
• gc-command
• gc-query
• gc-gui

All 3 are standard Kubernetes
"deployments" of a Pod with a
single Docker container. Pods are
ephemeral.

• axonhub
• axondb

Each need to operate as a cluster for
HA
Won't work as a "deployments"
Instead, using "StatefulSet". 

- Pods get identity (network, storage)
- Scaled up and down sequentially

Deploying gc-command
Dockerfile
FROM openjdk:8-jdk-alpine
VOLUME /tmp
ADD gc-command-1.0.jar app.jar
ADD application.properties .
ENTRYPOINT ["java","-jar","/app.jar"]

application.properties
axoniq.axonhub.servers=axonhub.default.svc.cluster.local

When creating the Kubernetes StatefulSet,
this DNS SRV entry will be created and point
to all nodes of the cluster.

Deploying gc-command
Pushing this to Google Kubernetes Engine via Google
Container Repository:

docker build -t gc-command .
docker tag gc-command eu.gcr.io/giftcard-distributed/gc-command
docker push eu.gcr.io/giftcard-distributed/gc-command

kubectl run gc-command --image eu.gcr.io/giftcard-distributed/gc-
command --replicas=1

axonhub.yaml
apiVersion: v1
kind: Service
metadata:
 name: axonhub
 labels:
 app: axonhub
spec:
 ports:
 - port: 8124
 name: grpc
 targetPort: 8124
 clusterIP: None
 selector:
 app: axonhub

apiVersion: v1
kind: Service
metadata:
 name: axonhub-gui
 labels:
 app: axonhub
spec:
 ports:
 - port: 8024
 name: gui
 targetPort: 8024
 selector:
 app: axonhub
 type: LoadBalancer

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: axonhub
spec:
 serviceName: "axonhub"
 replicas: 3
 selector:
 matchLabels:
 app: axonhub
 template:
 metadata:
 labels:
 app: axonhub
 spec:
 containers:
 - name: axonhub
 image: eu.gcr.io…
 ports:
 - containerPort: 8124
 protocol: TCP
 name: grpc
 - containerPort: 8024
 protocol: TCP
 name: gui
 readinessProbe:
 …

AxonHub gRPC port: headless service, all
instances registered in DNS by Kubernetes

AxonHub management GUI: behind HTTP
load balancer

Switching to live demo now
(but there are some slides after this one as backup)

Scaling out
Demo

