

Keith Adams -- kma@slack-corp.com
GOTO Amsterdam 2018

June 20, 2018

2

Scaling Slack

Some impossibility results

Two case studies

Takeaways

How Slack works even though it can’t

Introduction

“”

Like IRC?

Only visually.

● IRC is defined by its ephemerality

● Slack offers persistence

● Like a hybrid of e-mail and IRC

Slack Technical Constraints

Minimal Behavior of a Channel

● Validity/Agreement: if a member sends/receives a message, all members

will eventually receive it.

● Integrity: a message is received by each member at most once, and only if it

was previously sent

● Total Order: all members receive messages in the same order

Atomic Broadcast Definition

● Validity/Agreement: if a member sends/receives a message, all members

will eventually receive it.

● Integrity: a message is received by each member at most once, and only if it

was previously sent

● Total Order: all members receive messages in the same order

Uh-oh.

● Atomic broadcast is equivalent to consensus[1]

● Consensus in general is impossible[2]

[1] Chandra and Toueg. Unreliable failure detectors for reliable distributed systems. JACM

43(2):225–267, 1996.

[2] Fischer, Lynch, and Paterson. Impossibility of Distributed Consensus with One Faulty

Process. JACM 32(2):374-382, 1985.

http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=226647
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=226647
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

So … are we done here?

RIP Slack
2014-2018

“Useful until proven impossible”

Of course not!

● There are practically useful consensus systems despite FLP

● : Relax constraints

● Cryptocurrencies: probabilistic log

● Paxos/ZAB/Raft/...: might not terminate

Scaling Impossible Things

● What constraints to relax is an end-to-end property[1] of the system

● Varies by application, its parameters

● Complexity is inherent

● Our solution keeps changing with app, scale, user behavior, hardware

economics, ...

J. H. Saltzer, D. P. Reed, D. D. Clark, “End-to-End Arguments in System Design,” 2nd

International Conference on Distributed Computing Systems, Paris, (April 1981), pp. 509-512.

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

Case Study #1: Message Send/Receive

Slack Cartoon

MySQL

webapp

Channel
Server

Channel Server

Real-time service, accessed over
WebSockets.

● Push updates to clients

● Messages, typing indicators, presence

● Witness to order of messages

● Grab-bag of other roles

Division of Labor

WebApp

>1MLoC Hacklang monolith. Medium levels
of SOA-osity.

● CRUD

● Storage

● Retrieval, permissions

● Session establishment

https://hacklang.org/

Send/receive for Online Clients

Client B

Channel
Server

WebApp

Client A

Client Sends to CS

Client B

Channel
Server

WebApp

Client A

CS Amplifies, then Acks

Client B

Channel
Server

WebApp

Client A

End of User-Perceived Latency

Client B

Channel
Server

WebApp

Client A

Store Message in DB

Client B

Channel
Server

WebApp

Client A

The Happy Path

● Latency of WebApp, DB writes hidden from users

● But what if something goes wrong?

CS Crash!

Client B

Channel
Server

WebApp

Client A

WebApp Outage

Client B

Channel
Server

WebApp

Client A

Dealing with Failures

● CS maintains an on-disk buffer of uncommitted sends

● Replayed when recovering from CS crash

● Retried while webapp is unavailable

● State

○ Complexity

○ Risk during CS code changes

○ But provides partial end-to-end utility while site is hard-down

Changes since 2014

● Webapp more stable

● Job queue more stable and scalable

○ Safe way of deferring work

○ See Saroj, Matt, Mike, and Tyler’s blog post

https://slack.engineering/scaling-slacks-job-queue-687222e9d100

New Send Flow

Client B

Channel
Server

WebApp

Client A

JobQueue

Defer Slow Work

Client B

Channel
Server

WebApp

Client A

JobQueue

Send Real-Time Updates

Client B

Channel
Server

WebApp

Client A

JobQueue

End of user-perceived latency

Client B

Channel
Server

WebApp

Client A

JobQueue

HTTP 200, deferred work

Client B

Channel
Server

WebApp

Client A

JobQueue

New Flow Observations

● Crash-safe

● Low latency by deferring costly parts

● Stateless-ish CS now possible

● Clients can send without establishing a web socket session

So this way is better, right?

● In 2018, yes

○ Still rolling out to all geographies, teams

● But it definitely wasn’t in 2014

○ Extra hop between clients

○ Webapp was less available

○ JobQueue was finite capacity

Case Study #2: WebSocket initiation

Slack is Connection-Oriented

● Most of our community’s scaling experience is request-oriented

● Slack: Server-push via WebSockets

● > 5M simultaneous sessions at peak, with wide peak-to-trough variations

Classic Session Establishment Pattern

● Invoke rtm.start API method

● Use wss:// url in results to start session

https://api.slack.com/methods/rtm.start

WebApp harvests team data

WebApp

Client A

Channel
Servers

WebApp delivers huge payload

WebApp

Client A

Channel
Servers

Establishing WS connection (done)

WebApp

Client A

Channel
Servers

Rtm.start payload

● “Keyframe” of team state

● Users, profiles, channels and membership, latest-modified timestamps for

channels, logged-in users’ last-read timestamps, ...

● Incremental updates via WebSocket

Great in 2014!

● This worked great for small teams

● …close to Slack’s datacenter

● As organizations surpassed 1000, then 10,000, then 100,000

● ...and spread across the globe...

Problems

1. Rtm.start payload size. (Performance)

2. Connection storms place redundant load on databases. (Reliability)

3. Round-trip times for most of the world. (Performance)

Slack’s Solution: Flannel

● Stateful, Application-aware Microservice

● Pre-warmed cache of teams, channels, users, ...

● Terminates websockets

● Runs in edge regions, reducing load on core and improving service time

● See Bing Wei’s blog post and talk for more details

https://slack.engineering/flannel-an-application-level-edge-cache-to-make-slack-scale-b8a6400e2f6b
https://www.infoq.com/presentations/slack-scalability

Flannel

webapp

Channel
Server

Flannel Flannel

Paris Singapore US East

Establishing Session Flannel-Style

Flannel

Client A

WebApp

So Flannel is better, right?

● Yes!

● Simpler, safer, faster

● But no way to foresee this before reaching this scale

● Next scale might change

Takeaways

● Find the end-to-end part of your problem

● Optimality is contingent, and changes with growth

● Simplicity misapplied is just as poisonous as complexity

