goto;
plenst
Ask questions

through the app
= Rqgte Session
Thank you!

@GOTOamst gotoams.nl

v slack June 20, 2018

Scaling Slack

Keith Adams -- kma@slack-corp.com
GOTO Amsterdam 2018

Introduction

Some impossibility results

How Slack works even though it can’t

Two case studies

Takeaways

Acme Sites

summer-campaign

or

C Ooul 15
brainstorming

client-proposal

media-and-pr

#client-proposal

£)

Victoria Thomas

Hey team, hoping to have that proposal ready for the Alaska
clients by 3pm today, how are we doing? | can chip in
wherever needed!

Carl Benting

I’'m just about finished putting together the estimate
portion of it, | could use some feedback. Here's the google
doc I'm working on... docs.google.com/bin/proposal

Q3 OOH — Cost Estimate

Google Drive Document

v R

Victoria Thomas
The numbers look pretty good, | tweaked a few things, but
we're good to go!

Reena Baines
I'm just wrapping up the sketches, I'll post them here once
I’'m done!

Q @ w

About #client-proposal

& Channel Details

Pinned Items

12/19 Members

Shared Files

£\ Notification Preferences

Like IRC?

Only visually.

e |IRCis defined by its ephemerality
e Slack offers persistence

e Like ahybrid of e-mail and IRC

Slack Technical Constraints

Minimal Behavior of a Channel

e Validity/Agreement: if a member sends/receives a message, all members
will eventually receive it.

e Integrity: a message is received by each member at most once, and only if it
was previously sent

e Total Order: all members receive messages in the same order

Atomic Broadcast Definition

Validity/Agreement: if a member sends/receives a message, all members
will eventually receive it.

Integrity: a message is received by each member at most once, and only if it
was previously sent

Total Order: all members receive messages in the same order

Uh-oh.

e Atomic broadcast is equivalent to consensus|1]

e Consensusin general isimpossible[2]

[1] Chandra and Toueg. Unreliable failure detectors for reliable distributed systems. JACM

43(2):225-267, 1996.

[2] Fischer, Lynch, and Paterson. Impossibility of Distributed Consensus with One Faulty

Process. JACM 32(2):374-382, 1985.

http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=226647
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=226647
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf

So...are we done here?

g o

RIP Slack
2014-2018
“Useful until proven impossible”

Of course not!

There are practically useful consensus systems despite FLP
4 Relax constraints
Cryptocurrencies: probabilistic log

Paxos/ZAB/Raft/...: might not terminate

Scaling Impossible Things

e What constraints to relax is an end-to-end property[1] of the system

e Varies by application, its parameters

e Complexityisinherent

e Oursolution keeps changing with app, scale, user behavior, hardware

economics, ...

J. H. Saltzer, D. P. Reed, D. D. Clark, “End-to-End Arguments in System Design,” 2nd

International Conference on Distributed Computing Systems, Paris, (April 1981), pp. 509-512.

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

Case Study #1: Message Send/Receive

Slack Cartoon

|

Channel W,
Server |

Division of Labor

WebApp

>1MLoC Hacklang monolith. Medium levels Real-time service, accessed over

of SOA-osity. WebSockets.
e CRUD e Pushupdatesto clients
e Storage e Messages, typing indicators, presence
® Retrieval, permissions e Witness to order of messages

e Session establishment e Grab-bag of otherroles

https://hacklang.org/

Client A

Client B

Channel
Server

WebApp

Send/receive for Online Clients

Client Sends to CS

Client A

Client B

Channel
Server

WebApp

CS Amplifies, then Acks

Client A

Client B
Channel Z

Server

WebApp

End of User-Perceived Latency

Client A

Client B
Channel Z

Server

WebApp

Store Message in DB

Client A

Server

Client B .
Channel Z
0

WebApp X

The Happy Path

e Latency of WebApp, DB writes hidden from users

e Butwhatif something goes wrong?

Client A

Client B

Channel
Server

WebApp

CS Crash!

WebApp Outage

Client A

Client B .
Channel Z
0

Server

WebApp X

Dealing with Failures

CS maintains an on-disk buffer of uncommitted sends
Replayed when recovering from CS crash
Retried while webapp is unavailable
State
o Complexity
o Risk during CS code changes

o But provides partial end-to-end utility while site is hard-down

Changes since 2014

e Webapp more stable
e Job queue more stable and scalable
o Safe way of deferring work

o See Saroj, Matt, Mike, and Tyler’s blog post

https://slack.engineering/scaling-slacks-job-queue-687222e9d100

Client A

Client B

Channel
Server

WebApp

JobQueue

New Send Flow

Client A

Client B

Channel
Server

WebApp

JobQueue

Defer Slow Work

\

Client A

Client B

Channel
Server

WebApp

JobQueue

Send Real-Time Updates

/'1\
\

Client A

Client B

Channel
Server

WebApp

JobQueue

End of user-perceived latency

Client A

Client B

Channel
Server

WebApp

JobQueue

HTTP 200, deferred work

New Flow Observations

Crash-safe
Low latency by deferring costly parts
Stateless-ish CS now possible

Clients can send without establishing a web socket session

So this way is better, right?

e 1In2018,yes

o Stillrolling out to all geographies, teams
e Butitdefinitely wasn’tin 2014

o Extra hop between clients

o Webapp was less available

o JobQueue was finite capacity

Case Study #2: WebSocket initiation

Slack is Connection-Oriented

e Most of our community’s scaling experience is request-oriented
e Slack: Server-push via WebSockets

e >5Msimultaneous sessions at peak, with wide peak-to-trough variations

Classic Session Establishment Pattern

e Invoke rtm.start APl method

e Usewss://urlin results to start session

https://api.slack.com/methods/rtm.start

WebApp harvests team data

Client A T
WebApp X
Channel Z

Servers

WebApp delivers huge payload

Client A T
WebApp X z
Channel Z

Servers

Establishing WS connection (done)

Client A T
WebApp X Z
Channel Z

Servers

Rtm.start payload

“Keyframe” of team state
Users, profiles, channels and membership, latest-modified timestamps for
channels, logged-in users’ last-read timestamps, ...

Incremental updates via WebSocket

Greatin 2014!

This worked great for small teams
...close to Slack’s datacenter
As organizations surpassed 1000, then 10,000, then 100,000

...and spread across the globe...

Problems

1. Rtm.start payload size. (Performance)
2. Connection storms place redundant load on databases. (Reliability)

3. Round-trip times for most of the world. (Performance)

Slack’s Solution: Flannel

Stateful, Application-aware Microservice

Pre-warmed cache of teams, channels, users, ...

Terminates websockets

Runs in edge regions, reducing load on core and improving service time

See Bing Wei’s blog post and talk for more details

https://slack.engineering/flannel-an-application-level-edge-cache-to-make-slack-scale-b8a6400e2f6b
https://www.infoq.com/presentations/slack-scalability

Flannel

Paris . Singapore . US East

Channel
Server

\ c D (
[Flannel >L webapp }

J U

Establishing Session Flannel-Style

Client A T
Flannel X Z
WebApp Z

So Flannel s better, right?

Yes!
Simpler, safer, faster
But no way to foresee this before reaching this scale

Next scale might change

Takeaways

e Find the end-to-end part of your problem
e Optimality is contingent, and changes with growth

e Simplicity misapplied is just as poisonous as complexity

goto;

?LeaSC
Remember to

rate this session
Thank 50»«.!

@GOTOamst gotoams.nl

