
Build your own

Markus Völter
voelter@acm.org
www.voelter.de
@markusvoelter

Why and How?

1
Motivation

I just finished v3 of the requirements
document. But I am sure it will take
another two months of ping-pong
with IT to get the damn thing to run.

Aargh, another half-baked requirements
document. Those guys always rely on us
to “debug“ it and make it work.

The IT guys have decided to port the
system to mobile phones. We have to
do another re-write/-understand of all
the Fachlichkeit. Again!!

Well, yes, but we have to keep up with
the evolving technologies and new
platforms. No way around it!

Decouple Fachlichkeit and Technology!
so you can evolve both independently.

Represent Fachlickeit precisely/formally,
so you can analyze, test, simulate.

Use “friendly“ languages,
so domain experts can contribute directly.

Formal Language.
Checkable.

Understandable.DSL
Domain
Specific
Language

M1 M2 M3

L1 L2 L3
def := … def := ∃ ⊢ #$α def := …

LM ∃, ⊢, #, $, α

<meta> <meta> <meta>

<meta> <meta> <meta>

LA
NG

UA
GE

 D
EF

IN
IT

IO
N

2
Examples

Insurance Contracts

Insurance
Programs

Write formal code in a DSL
mixed with tables and text

Now with IDE support and executable tests

The same notation!

Specify/Program/Test/Debug

Public Benefits

Data Flow Programming

Tachograph Rules

Math

Insurance Math

Satellite Software

Healthcare

Healthcare

http://voelter.de/data/pub/MPS-in-Safety-1.0.pdf

3
MPS Demo

(Meta-) Tooling

Language Workbench
Open Source, by Jetbrains

Very Powerful
Used for years by itemis and others
Vast Experience

(Meta-) Tooling

Language Workbench
Open Source, by Jetbrains

Very Powerful
Used for years by itemis and others
Vast Experience

MPS: Language Toolkit

MPS: Notational Freedom

MPS: Language Composition

MPS: Language Composition

Embedding/Extending the KernelF
functional language is key to DSL
development productivity.

TU Delft

itemis/Typefox

CWI Amsterdam

Solmi/Persiani

Rascal

The Whole
Platform

Other Language Workbenches

http://voelter.de/data/pub/LWB-ResultsAndBenchmarks.pdf

4
Lessons Learned

A Language
is not Enough

Language

Great IDE

Analyses

Refactorings

Testing

Debuggers

Abstractions
Notations

Syntax Coloring
Code Completion

Goto Definition

Relevant
Good Errors

Aligned with Processes

Write Tests
Run them

Report Back

Animate Execution
Simulators

GOOD

GREAT

Influences on
the Language

Domain
Structure

Model
Purpose

Analyze, Generate

User
Skills

Software
Engineering

Practices

Non
Functionals

Permissions,
IP, Sharing

Tool
Capabilities

Notations,
Editing, Scale

Sep. of Concerns
Different Views

Get a better tool :-)

Refactor towards
Structure

Educate,
Put results in context

Domain
Structure

Model
Purpose

Analyze, Generate

User
Skills

Software
Engineering

Practices

Non
Functionals

Permissions,
IP, Sharing

Tool
Capabilities

Notations,
Editing, Scale

Sep. of Concerns
Different Views

Get a better tool :-)

Refactor towards
Structure

Educate,
Put results in contextStyle!

How to make
People precise?

Precision

Programming
!=

{ Formulas, Rules
Data Structures
Tables
Values

}Performance
Scalability

Robustness
Deployment

Training
is required.

Skills?

Organizations do not have
the necessary skills. True.
But...„

“
AI Big

Data Agile R E
S T

So build it. Evolve. Hire. Buy.

Is this the next
legacy system?

„ “Today‘s software is
tomorrow‘s legacy system.

Or is it?

Language Tech 1

V1 V2 V3

Evolution

Existing models become incompatble
with new language
ÞLanguage Versions

Migration Scripts

Runtime T 1

Generator 1

Language Tech 1

V1 V2 V3

Evolution

Runtime T 1

Generator 1

Runtime T 2

Generator 2

Retargetting

Runtime Tech outdated, uncool or slow
ÞKeep Lang Technology

Keep Models
Build new Generator

Language Tech 1 Language Tech 2

....

Migration

V1 V2 V3 V4 V5 V6

Evolution Evolution

Runtime T 1

Generator 1

Runtime T 2

Generator 2 Generator 3

Language Tech outdated, uncool
ÞBuild new Tool

Migrate Data Feasible, because it well-defined domain
semantics and free from „technology stuff“

Retargetting

„ “Today‘s software is
tomorrow‘s legacy system.

No, it is not.

In conflict
with Agile?

MD* and Agile is in Conflict.„ “
Project Language

Development
System

DevelopmentDepend on, use

Project 1 Language
Development

Project 2 System
Development

Project N
…

Dep’d on, use

Later:

1

2

Project Language
Development

System
DevelopmentDepend on, use

1

Framework

Library

Platform

Manage like any other
intra-project dependency.

Evolution of client code is
easier than for F/L/P because of

migration support!

MD* and Agile is in Conflict.„ “

Project 1 Language
Development

Project 2 System
Development

…

Dep’d on, use

Later:

2

Framework Library Platform

Manage like any other
3rd party depencency: Development Roadmap

Issue Tracker
Release Notes
...

MD* and Agile is in Conflict.„ “

Project 2 System
Development

3

Models and DSLs are
an Enabler for Agility: Integration of Domain Experts

„Living“ Requirements
Decoupled Fachlichkeit & Technik

MD* and Agile is in Conflict.„ “WTF?

Project 1 Language
Development

4

Leading LWBs are so productive,
you can literally sit with the domain
experts and interactively prototype
languages (and then clean up later)

I’ve looked at the
implementation of the

language in MPS, but I didn’t
find much. Is this all there is?

Where’s the magic?

[Customer]

MD* and Agile is in Conflict.„ “

Project 1
Language

Development
4

Leading LWBs are so productive,
you can literally sit with the domain
experts and interactively prototype
languages (and then clean up later)

I’ve looked at the
implementation of the

language in MPS, but I didn’t
find much. Is this all there is?

Where’s the magic?

[Customer]

MD* and Agile is in Conflict.„ “

Analyze Build Try out Cleanup
Stabilize Validate

1 to 3 days

1 hour

What about CI?

You integrate like any other
automatable CI step.

5
Wrap Up

http://voelter.de/data/pub/voelterEtAl2017-buildingMbeddr.pdf

Separation of concerns is key
to avoid the legacy trap

DSLs can isolate business logic
completely from technical concerns

DSLs can help integrate domain experts
with communication/review or even coding

Language Workbenches enable DSLs
by reducing effort to build, compose and maintain them

DSLs are not in conflict with Agile
... to the contrary, DSLs are a powerful enabler!

