Build your own

Language

Why and How?

- Markus Volter
voelter@acm.org

Noelter (et /it gl G R e Ry

A

!

Motivation

VOO &® 5@

NS

| just finished v3 of the requirements
document. But | am sure it will take

another two months of ping-pong
with IT to get the damn thing to run.

NS

The IT guys have decided to port the
system to mobile phones. We have to

do another re-write/-understand of all
the Fachlichkeit. Again!!

Decouple Fachlichkeit and Technology!

Represent Fachlickeit precisely/formally,

Use “friendly” languages,

Formal Language.
Checkable.

Understandable.

DSL

Domain
Specific
Language

Examples

Insurance Contracts

Funktionsmodell VKzahlbtgTF

Formale Beschreibung

Funktion: Yzar
‘ Enthaltende Quelldatel: t
Produkt-Typ
0 PR-Typ:
States:
l Specify/Progra Parameter-Attribute: t
Rickgabe-Typ:

Verwendete VADM-Attribute: ...

Aufgerufene Funktionen: v sartTi vk _ptr: tvk _el<> £; tech ptr techptr L

Insurance
Programs

Beschreibung

Hilfsvariablen

k2D KoasaZzah

Verarbeitungen
Write formal code in a DSL § mowssnte Bemerkung

mixed with tables and text

PX_ TYP ID.KAPITAL KONTO Ir swtrk_zustand = ZUSTAND.BPFL
vkib = zvtrk_2b
. End If
Now with IDE support and ¢
P YP_ID. F If (:stasm _ptr <> NULL
If (:zustand = ZUSTAND.BPFL

The same notat szb = et
If (VWXversartTF tvk el ptr; tech p] = VERSART.BUZB)

buzbBrfr = 0

End If
End If
End If

Andernfalls Fehler (PX

Public Benefits

Unterhaltsvorschuss
Zeitangabe: laufend
Haufigkeit: monatlich einmal
Leistungskontext:

Leistungsart: Leer

Zahlart: uvg

Anspruch Beginn: Anfang - Unbegrenzt: junger Mensch.geburtsdatum

Anspruch Ende: 91.01.1800™ - 31.12.9999™ : min(junger Mensch.geburtsdatum + 12 Jahre ,
datum + 72 Monate - Anzahl Monate mit uvg)

Zeitraum fir Berechnung: Anfang - Unbegrenzt: {standardzeitraum, standardzeitraum}
zweckgebundene Leistung: O

dem Grunde nach: O

Zeitraumbezogene Daten

nullwerte Anzeigen : boolean = 01.01.1800 ~ - 31.05.2016 © : true
01.06.2016 ° - Unbegrenzt : false

berechnungsart : berechnungsarttyp = 01.01.1800 -~ 31.12.9999 7 : dreiBigstel

Bezugsobjekte:

Attribute: bemerkung : string

antragsdatum : Datum

Data Flow Programming

composite block[plusOffset: number, minusOffset: number]
plusMinus_Composite_Offset(a: number, b: number)->(sum, difference)

r ' ¢ r r
ind { »
k] ¥
| | : A |

constNum
expr := minusOffset

[a B " difference

constNum
expr := plusOffset

=) «

Tachograph Rules

1 2 3 Ll 1 L1 2
B - [TinePerioa0bjectTyphd] -
scenario TimePeriodObjectTypAl|> |} o B |[TinePeriodObjectTypA6
scenario | J<[TimePeriodSpecifier2::Duration = 24 Hours |>
scenario <|TimePeriodSpecifier3::Duration = 15 Minutes])D
scenario . A TimeSpikeObjectTypAS .

database databaseOneAndMorelterationsHappy

Type Begin End Duration Occurence
eTimePeriodObjectTypA 50 100 50 —
eTimeSpikeObjectTypA 86000 I

eTimePeriodObjectTypA 86020 6030 10 [

fun midnightl(a: number, b:

fun midnight2(a: number, b: number, c:

val bSquared = pow2 (b)

number) {

val sqrtPart = sqrt(bSquared = 4 x a x ()

(-b + sqrtPart) / (2 * a)

fun midnight3(a: number, b: number, c: number) {

-b + '\/b2 -4 %axc

2 * 3

Insurance Math

number, c¢: number) = (=b + sqrt(pow2(b) =4 xa xc)) / (2 x a)

. -1 * (1 - qg.lookup(x,

D : Kommutationswerte 1l : Lebende im Jahr x
Ergebnistyp: Laufvariable: Parameter: Ergebnistyp: Laufvariable: Parameter:
umber{3} x i umber{0} x geschlecht
geschlecht Q
q
1 = startwertlLebende
D. = -

geschlecht))

Satellite Software

Activity ena

Short Description

Descraption
Constrainmts

with Messmeric 1d

is commandable by 7C(150,1)

0:7 NTRL inRodel OF
In-Parameter:
intls constrained
intle . constrained .
Component ") constrained
FEuEsST 3.5 { } e |)
on error deo
on erreor abert
2T per’ -
DELAY for
NTR. setBodelON)
TELEMETRY (1%0,11)
Descraiptlion }
[initialresp : int32 '/ = PUSISO.AVTENE]
Activity disableTcs with Mummeric Id 2 is commandable by 1C(150,.2)

Short Descriptiom: disal na

Description:
Comstraimts:

0: TCSOONTR. inModel N)
In-Parameter:

T NTR.setRodel(0FF)

REQUEST TACQA.stopAcquisition |) ==> ‘
on error do
REQUEST TACOE.stopAcquasition |) ==> ‘

on error do

} Component Thermal trolSyste

Healthcare

decision table BpScoreDecisionTable(sys: bpRange, dia: bpRange) =

dia
<= 50 [51..90] [91..95] [96..100] [101..109] >= 110
SysS <= 90 1 1 3 4 5 6
[91..140] 2 2 3 4 5 6
[141..150] 3 3 3 4 5 6
[151..160] 4 4 4 4 5 6
[161..179] 5 5 5 5 5 6
>= 180 6 6 6 6 6 6

decision tree DiarrheaStoolsDecisionTree(score: DiarrheaStoolsOverBaseline,
patientHasAnySymptom: boolean, goToStartBrat: boolean)

DiarrheaRecol
DiarrheaReco3
Di heaReco2
patientHasAnySymptom AT THOMRELO
score >= 7 . .
score in [4..6] DiarrheaRecoSBrat
goToStartBrat<::)
DiarrheaReco(CBrat
type temperature: number([36]|42]{1}
type measuredTemp: number([35]|43]{2}
Error: type number[32.55|39.99]{4} is not a subtype of number{36|42){1}
val T_measured: measuregiemp = 42.22

val T_calibrated: temperature = T measured x 0,91

Healthcare

PASS

function test gradeStools
given 7 expected 3
given 6 expected 2
given 5 expected 2
given 4 expected 2

PASS

function test DiarrheaStoolsDecisionTree
given false, 1, true, false expected DiarrheaUSRecolevellSymptom
given false, 9, false, false expected DiarrheaUSRecoGrade3

PASS
function test checkScreeningQuestion
given answers to DiarrheaScreeningQuestionnaire { expected true
dietarySupplements: false
medication : true
hospitalized : false

}

Software & Systems Modeling
pp 1-24 | Cite a5

Using language workbenches and domain-specific
languages for safety-critical software development

Authors Authors and affiliations

Markus Voelter -, Bernd Kolb, Klaus Birken, Federico Tomassetti, Patrick Alff, Laurent Wiart, Andreas Wortmann,

Arme Nordmann

Regular Paper]
13 51

First Online: 17 May 2018
Shares Dowmicads

Abstract

Language workbenches support the efficient creation, integration, and use of domain-specific
languages. Typically, they execute models by code generation to programming language code.
This can lead to increased productivity and higher quality. However, in safety-/mission-critical
environments, generated code may not be considered trustworthy, because of the lack of trust
in the generation mechanisms. This makes it harder to justify the use of language workbenches
in such an environment. In this paper, we demonstrate an approach to use such tools in critical
environments. We argue that models created with domain-specific languages are easier to
validate and that the additional risk resulting from the transformation to code can be mitigated
by a suitably designed transformation and verification architecture. We validate the approach

with an industrial case study from the healthcare domain. We also discuss the degree to which

the approach is appropriate for critical software in space, automotive, and robotics systems.

http://voelter.de/data/pub/MPS-in-Safety-1.0.pdf

MPS Demo

VOO &® 5@

(Meta-) Tooling

Language Workbench

Open Source, by Jetbrains

Very Powerful

Used for years by itemis and others

Vast Experience

(Meta-) Tooling

Language Workbench
Open Source, by Jetbrains @L(UU @
AuUoil
Very Powerful
Used for years by itemis and others OHB
SIEMENS

Vast Experience

@ workday

P SVoLuNTIS

ZURICH g .
elastingdiens
pits] .

I

MPS: Language Toolkit

Concepts, Properties, —
_generates 8 —»| Structure Inheritance, Relationships < Q
o =h
provides editors for S B
=3
—> Eaniousos I‘ »| Editor Projection Rules, Side o %
i guag Transformations, Intentions o O
= s
> o
w -]
@
= L]
extends 0..” 5 Type Typing Rules, Type 3 %
System Checks, Other Validatons S =
z |9
)
Con- Scopes, Usage Restrictions, <> Transfor- Reduction Rules, Weaving Spechies
straints Property Value Limitations mations Rules, Transformation Prios <priority 0..*

+ Refactorings, Find Usages, Syntax Coloring, Debugging, ...

MPS: Notational Freedom

MPS: Language Composition

Embedding

-+

Extension

-4
I'Base +

Extension Composition

< L

MPS: Language Composition

Embedding/Extending the KernelF
functional language is key to DSL
development productivity.

Domain-Specific Data Structures

Domain-Specific Behaviors
based on existing paradigms such as imperative,

functional, declarative, data flow, state-based

Functional Expressions

Other Language Workbenches

{S} spoofax TU Delft

Xte?< itemis/Typefox

N
%ﬁ%’? Rascal CWI Amsterdam

The Whole Solmi/Persiani
Platform

Computer Languages, Systems & Structures

~ - l‘ v
v ‘ Volume 44, Part A, December 2015, Pages 24-47

Special issue on the 6th and 7th Intemational Conference on Software
Language Engineering (SLE 2013 and SLE 2014)

Evaluating and Comparing Language Workbenches

Existing Results and Benchmarks for the Future

Sebastian Erdweg¢, Tijs van der Storm?, Markus Vélter®, Laurence Tratt®, Remi
Bosman', William R. Cook®, Albert Gerritsen!, Angelo Hulshoutg, Steven Kelly", Alex
Loh®, Gabriél Konat!, Pedro J. Molina', Martin Palatnik!, Risto Pohjonen®, Eugen
Schindler!, Klemens Schindler!, Riccardo Solmi!, Vlad Vergu', Eelco Visser', Kevin
van der Vlist*, Guido Wachsmuth', Jimi van der WoningI

“CWI, The Netherlands £Delphino Consultancy
YKing's College London, UK kMetaCase, Jyviiskyld, Finland
“University of Texas at Austin, US 'TU Delft, The Netherlands
YTU Darmstadt, Germany JIcinetic, Sevilla, Spain
“voelter.de, Stuttgart, Germany ¥Sogyo, De Bilt, The Netherlands
ISioux, Eindhoven, The Netherlands 'Young Colfield, Amsterdam, The Netherlands

http://voelter.de/data/pub/LWB-ResultsAndBenchmarks.pdf

Lessons Learned

. T

(@)

A Language
is not Enough

Language

Abstractions
Notations

Testing

Write Tests
Run them

Refactorings Report Back

Aligned with Processes

Analyses

Relevant
Great IDE Good Errors

Syntax Coloring
Code Completion

Goto Definition

Debuggers

Animate Execution
Simulators

Influences on
the Language

Non
Functionals

Domain

Structure Permissions,

IP, Sharing

Sep. of Con
Different Vi

esults in context

tor towards
tructure

R

er tool :-)

Model Tool Software
Purpose Capabilities Engineering

Analyze, Generate Notations, Practices
Editing, Scale

Non

Domain }
Functionals

Structure

Sep. of Concérhs

Different View Refactor towards

Structure

Model Software
Purpose Capabilities Engineering
Practices

How to make
People precise?

Formulas, Rules

Data Structures

Precision § ...

Values

Performance
Scalability

=
Robustness } Pro g ramm i n g

Deployment

Training
is required.

ProgrammingBasics

How to think like a programmer.

What is this?

This is a tutorial on how 10 think ke a programmer, and to learn some programming along

the way. It teaches you fundamental ideas and concepts present in all programming
systems, from “real” programming languages over scripting languages and configuration

files to domain-specilic languages

Table of Contents

]
Part 1: The Basics Part 2: Making Programming Us« E i
1. Va \ i x { 1
3. Ty 3

4. Fu

Organizations do not have
the necessary skills. True.

Bi .
But... Bl £ B 5 2 Hi

So build it. Evolve. Hire. Buy.
f(1m) T SO0UNDS

HERE EXPENSIVE

LF YOU COMBINE
CON AND INSULT,
YOU GET “"CONSULTY

I LIKE TO CON
PEOPLE. AND I

1|] TO AND

slsre S cote

LIKE TO INSULT CONSULT | DEMEANING.
PEOPLE. s LYOU. .. OKAY,
g o

>
)

»

%> :
\

xtar_© w0 vwo

Is this the next
legacy system?

Today’s software is
tomorrow’s legacy system.

Orisit?

Language Tech 1

o

Evolution

Existing models become incompatble
with new language
—> Language Versions

Migration Scripts

Language Tech 1

o

E—)

Evolution

Runtime T1 I Runtime T 2

Reta rgetting

Runtime Tech outdated, uncool or slow
—> Keep Lang Technology

Keep Models

Build new Generator

Migration |
Language Tech 1 Language Tech 2
- h

B E—

Evolution Evolution

I

Retargetting

Language Tech outdated, uncool
—> Build new Tool

Migrate Data reasible, because it well-defined domain
semantics and free from ,technology stuff”

Today’s software is
tomorrow’s legacy system.

No, it is not.

In conflict
with Agile?

MD* and Agile is in Conflict.

Project
Language | System
Development | ™. cndon, use Development

Later:

MD* and Agile is in Conflict.

Project
Language l System
Development | ™. cndon, use Development

Manage like any other
intra-project dependency.

Librar i :)
y Evolution of client code is

easier than for F/L/P because of
migration support!

MD* and Agile is in Conflict.

l Later:

Project 1 [Project 2
Q ’ Language ' . System
Development || ocodon, use Development
I

Manage like any other

3rd party depencency: Development Roadmap
Issue Tracker

Release Notes

MD* and Agile is in Wﬁzt

o O

Models and DSLs are

an Enabler for Agility: Integration of Domain Experts
,Living“ Requirements
Decoupled Fachlichkeit & Technik

MD* and Agile is in Conflict.

Leading LWBs are so productive,
you can literally sit with the domain

experts and interactively prototype
languages (and then clean up later)

I’'ve looked at the
implementation of the
language in MIPS, but | didn’t

find much. Is this all there is?
Where’s the magic?

[Customer]

MD* and Agile is in Conflict.

Leading LWBs are so productive,
you can literally sit with the domain

experts and interactively prototype
languages (and then clean up later)

Analyze Try U Cleanu
P .
Stabilize Validate

e T

1 hour

—

1 to 3 days

I’'ve looked at the
implementation of the
language in MIPS, but | didn’t

find much. Is this all there is?
Where’s the magic?

[Customer]

What about CI?

You integrate like any other
automatable ClI step.

Model | Tests ﬁ» Model | Tests
Language(s) o
a LWB 3
m
Domain Experts : Q -
| Y
: 2
Lang Engineers !.........
I
Tech Architects : Tocts
<«— Artifact Flow : —
<--- Feedback : _________________________ i_ _____
I
Live Staging L oarver

Wrap Up

. T

(@)

® The Blockchain

Ethereum Fundamentals
Jana Petkanic

Developing Smart Contracts
Olwvier Rikken

Let's All just Agree: Achieving
Consensus in Blockchain-based

Systems
Stefan Tilkov

A Language Stack for Implementing
Contracts
Markus Volter

Blockchain in Healthcare
Jeroen van Megchelen

£3 Wednesday Jun20 © 15:00 - 15:50

£ e
@ Location: Administratiezaal

A Language Stack for
Implementing Contracts

The term Smart Contract is used for arbitrary
programs that run on the distributed, trustworthy
computing infrastructure provided by a blockchain.
However, the sweet spot for such programs is actual
contracts, i.e,, long-running, collaborative processes
involving several parties who may or may not trust
each other. To implement such contracts effectively,
we need much more than the Blockchain: contracts
must be expressed in a way so that the relevant
stakeholders, who are not typically programmers, can
understand the them; contracts must be functionally
correct, i.e., they must behave in exactly the way the
stakeholders expect; and they must be protected
against being gamed, for example, through sybil
attacks. The trust in the execution of the contract,
mostly through non-repudiability, is then provided by
the blockchain. In this talk, | discuss research into how
to formally model contracts, | present languages that
are suitable for representing contracts in a way that is
lawyer-accessible and prevents some aspects of
gaming, and | discuss how such approaches lead to
improved correctness through correctness-by-
construction and simplified verification.

Markus Volter
Language Engineer

¥ Oin

Q@ Website

Software & Systems Modeling
pp 1-46 | Cite as

Lessons learned from developing mbeddr: a case study in
language engineering with MPS

Authors Authors and affiliations

Markus Voelter , Bernd Kolb, Tamas Szabd, Daniel Ratiu, Arie van Deursen

Regular Paper Abstract

First Online: 09 January 2017
Language workbenches are touted as a promising technology to engineer languages for use in a
wide range of domains, from programming to science to business. However, not many real-
world case studies exist that evaluate the suitability of language workbench technology for this
task. This paper contains such a case study, In particular, we evaluate the development of
mbeddr, a collection of integrated languages and language extensions built with the Jetbrains
MPS language workbench. mbeddr consists of 81 languages, with their IDE support, 34 of them
C extensions. The mbeddr languages use a wide variety of notations—textual, tabular, symbolic
and graphical -and the C extensions are modular; new extensions can be added without
changing the existing implementation of C. mbeddr’s development has spanned 10 person-
vears 5o far, and the tool is used in practice and continues to be developed, This makes mbeddr
a meaningful case study of non-trivial size and complexity. The evaluation is centered around
five research questions: language modularity, notational freedom and projectional editing,
mechanisms for managing complexity, performance and scalability issues and the
consequences for the development process. We draw generally positive conclusions; language
engincering with MPS is ready for real-world use. However, we also identify a number of arcas
for improvement in the state of the art in language engineering in general, and in MPS in

particular

http://voelter.de/data/pub/voelterEtAl2017-buildingMbeddr. pdf

Separation of concerns is key
to avoid the legacy trap

DSLs can isolate business logic
completely from technical concerns

DSLs can help integrate domain experts
with communication/review or even coding

Language Workbenches enable DSLs

by reducing effort to build, compose and maintain them

DSLs are not in conflict with Agile
... to the contrary, DSLs are a powerful enabler!

