&

JAN
Language Stack

for implementing

Contracts

Markus Volter

Noelter (et /it

1

Context

N\ CONTRACT

An actual Any
t t Turing Complete
contrac
’ Program
executed

running on
a Blockchain.

automatically.

An actual contract,

executed automatically.

Multiple Parties. Formal Language.
Decision || Checkable.

Agreement | | Understandable.

Coordination. ~Event Tracking”

(Legally) Binding & Progress over time
Trusted.

Contract Contract
Definition Execution

Contract Contract

Definition Execution

Understand Behavior
Functional Correctness BC
Non-Gameability

N

TRUST

Blockchains

can provide certain

non-functional properties
to executable contracts.

Blockchains

are a suitable (partial)

implementation technology
iff these properties are needed.

Verification

Validation

Ensure that the program does
the correct things, wrt. to the

requirements.

Verification L 2

Validation B

Ensure that the program does
the correct things, wrt. to the

requirements.

Correct-by-Construction

Analysis-and-Fix

You analyze the code/model after the
fact and try to find problems which

devs then fix.

Correct-by-Construction

Analysis-and-Fix

Analysis Tools

Formal Language.
Checkable.

Understandable.

DSL

Domain
Specific
Language

Languages
Analysis Tools

Languages

Analysis Tools
EEEEEEE

State machines can always be checked
for dead states and unused transitions.

Decision tables must always be
overlap-free and complete.

Lots of History & Research

,, Computational Law

bligation, Permission

rdering, Causality, Time
Event, State

Lots of History & Research

; E' Composing contracts: an adventure

7% In financial engineering

= https://lexifi.com/files/resources/MLFiPaper.pdf

srcues POETS Process-oriented event-driven

a‘ﬁ,& transaction systems

AR

IR https://github.com/legalese/poets/blob/master/doc/
Henglein%20-%20POETS%20Process-oriented’%20event-
driven%20transaction%20@systems.pdf

i%5 Contracts in Programming and in

. s%3 Enterprise Systems

https://github.com/legalese/poets/blob/master/
doc/hvitvedmaster.pdf

RRT https://bitbucket.org/jespera/poets/raw/cOee7194ce57d2ad6ca8894
8a44e88e546d5f4a/doc/poets-techreport/tr.pdf

2

Solution

An Architecture For Smart Contracts

MPS / Convecton

DSL DSL DSL
Logistics Finance

Executable Multi-Party Contract Language

JavaScript
Ethereum Hyperledger CSS Z3
VM/Network P g

Generate to verification tools to build more

confidence beyond type checking.

An Architecture For Smart Contracts

MPS / Convecton

DSL DSL DSL
Logistics Finance
E Executable Multi-Party Contract Language E
Ethereum
Hyperledger Z3

HTML
JavaScript
CSS

Declarative Description

sulti-party-decision Unanimous

parties: bernd, markus

dynamic? (]

turnout: ne revokable? [

procedure: unanimous time limit: <none

multi-party-decision Unanimous
parties: bernd, markus

dynamic? O

procedure: unanimous time limit: <non
turnout: all revokable? [

Tt e

» tolList (BaseConcept in jetbrains.mps. lang.core)

» vole
» whoVoted

% tolList (BaseConcept in jetbrains.mps.lang.core)
*» turnoutAchieved

¥ voteAgainst

% voteFor

» whoVoted

» whoVotedAgainst

» whoVotedFor

MultiPartyBooleanDecision

A declarative, configurable specification of
how a number of parties makes a (Boolean]

decision.

Execution and Test

() run(Unanimous)
org. ietsi.core.expr.process.plugin Ml tipartyBoo leanDec is lonVa lue
Live($0)
MultipartyBooleanDecisionValue
whoVoted > (collection|®)
155caled > false
registeredParties >

(1, x]

(collect) 2)
09581505 M)
2 1100g%8apI8sa |

decisionTaken -» false

(2) « . addParty(klaus)
MultipartyBoo leanDec 15 Lonva lue
whoveted > (collection|®)
155ealed > false

registeredParties <> (collection)3)

@ ds fds| foRgIscesglsat |
€[09583503534)
2[1fo0gssesgesat)

decisionTaken <> false

i3] . .vote(markus)
MultipartyBooleanDec istonValue
whoVoted -> (collection|l)

(09583503534

155ealed > true
registeredParties -> (collection|ld

@las1as | 100g98digasat |

e[09583503534)

e[100g58a9g8sat)

decisionTaken -> false

(4] x.votelklaus)
MultipartyBooleanDec s ionValue
whoVoted -> (collection|2)

@[asfds| fo0gi8d09gisat)

e[09583503534)
isSealed > tryue
registeredParties —> (collection)3)

@los1os L 1oRgSodSgisar)

e[o95835a35)

e[\ 100g5Ba9gssat]

decisionTaken -> true

A MPBD instance maintains the state of a
decision process as It evolves over time.

Here, we play with an instance In the

Interactive REPL.

Combination with State Machines

More complex contracts are modeled as
state machines; events are the API.

event openAccess 10 1 od . : , : JuyS U
event requestAccess(newGuy: party) I guy ts 1 n the a
event terminateAccessRequest(who: party, newGuy: party) '
event voteForAccess(voter: party, newGuy: party)

event letsSell 10 1 | el .]

event voteForSelling(who: party)

event voteForStopSelling(who: party)

Internally, the use BPBDs.

\

multi-party-decision Sale multi-party-decision AccessControl
initial parties: bernd, klaus initial parties: bernd, klaus
dynamic? [X] sealable? [dynamic? [¥] sealable? [
procedure: unanimous time limit: <none> procedure: majority time limit: 20000
turnout: <none> revokable? [turnout: <none> revokable? []
var sale = run(Sale)
var pendingAccess = box(map<party, AccessControl>())
observable query currentlySelling = sale.decisionTaken

Combintation with State Machines Il

Here, a transition action creates a new
AccessControl instance ...

on requestAccess(newGuy) [!isDecider/R(newGuy)] : {
val acc = run(AccessControl)
pendingAccess.update(it.put (newGuy->acc))
acc.addParties(sale.registeredParties)

|

|

|l }
The state of that instance is then used in
guard condition for the top level SM.

on voteForAccess(voter, newGuy) [isPending/R(newGuy) && 1sDecider/R(voter)] : {
val acc = pendingAccess.val|[newGuy]
acc.vote(voter)
if acc.decisionTaken then {
sale.addParty(newGuy)
pendingAccess.update(it. remove(newGuy))
} else none

}

Preventing Game Theoretical Attacks

Only ,valid” senders can enter this state.

state playing [senderls(players)] {
on offerBid(money) : bids := bids.put(sender->money)

}... ‘

Events can only arrive at limited rate.

state requesting [rate(3/1000|commands-only)] {

}

States must be entered turn-by-turn.

state playing [senderlIs(players)] { i
state bidding [takeTurns(players|ordered|after 1000 remove)) { \
on offerBid(money) : bids := bids.put(sender->money) \
if [timeInState > 2000] -> finished |

|
|

J

An Architecture For Smart Contracts

MPS / Convecton

DSL DSL DSL
Logistics Finance

Executable Multi-Party Contract Language

Ethereum
Hyperledger Z3

HTML
JavaScript
CSS

Example: HyperCSL SYNGRATO

Lisp (Clojure) based internal DSL for specifi-
cation of general commercial contracts.

Inspired by Simon Peyton Jones and Jean-Marc

Eber and the POETS group at CPHU and ITU In
Denmark.

Uses Ken Adams’
Categories of Contract

Language as fundametal semantic building
blocks. Interpreter and Ul in prototype stage.

xample: HyperCSL YNGRAT

rexercised-timely? :pi

' p3

rpayment svent :adv$1000
€3
:fulfilled-timely p3
: p4
rpayment paysSs550
1 event-occureaq? event-of-default
4 first-time-of :event-of-default
* k
:p5
: L"‘ i',' Il N T .J | \v (-T) AA] A:, :
17 event=-occured event-or-derault
L first-time-of :event-of-default

Example: HyperCSL YNGRAT

A UI to visualize the interactive
execution of CSL contracts.

Loan Agreement

cl - Condition: event-occured? - executed - fulfilled

p0 - Preamble

This loan agreement dated 2014-06-01, by and between Lender Bank Co. and Borrower Corp., will set out the terms under which Lender

will extend credit in the principal amount of $1,000 to Borrower with an un-compounded interest rate of 5% per annum, included in the Clock
specified payment structure.

p1 - Discretion - Exercised: true - at: within

06/05/2015
Borrower may, by way of notice loan-request within the required time window of: 06/01/2014

Date 06/05/2015

p2 - Policy: not-activated

f: B
discretion-late?

= :pl

then:
Lo,
agreement-terminated at ?

c2 - Condition: exercised-timely? - p1 - fulfilled

executed at 06/01/2014

p3 - Obligation - fulfilled: true - at: within
lender must adv$1000 in favor of borrower within 06/01/2014 - 06/02/2014 loan-request at 06/01/2014
3 - Condition: fulfilled-timely? - p3 - fulfilled
p4 - Obligation - fulfilled: true - at: before

adv$1000 at 06/01/2014

(]

y$550 at 06/01/2015

borrower must pay$550 in favor of lender within 06/04/2015 P

3

Tooling

An Architecture For Smart Contracts

MPS / Convecton

DSL DSL DSL
Logistics Finance

Executable Multi-Party Contract Language

JavaScript
Ethereum Hyperledger CSS Z3
VM/Network P g

KernelF is an extensible functional

language used at the core of DSLs.

DSL Development

GPL Extension .

Reuse GPL incl. Expressions and TS Ext 1 Ext 2
Add/Embed DS-extensions

Compatible notational style
Reduce to GPL ~ N - GPL (Java,)

'Y R - as o a

\-i R T L
N EW La nguage Domain-Specific Data Structures
Analyze Domain to find Abstractions Domain-Specific Behaviors
Define suitable, new notations. based on existing paradigms such as imperative,

Rer on existing behavioral paradigm functional, declarative, data flow, state-based

Reuse standard expression language Functional Expressions
Interpret/Generate to one or more GPLs

Formalization KernelF

Use existing notation from domain
Clean up and formalize
Generate/Interpret

Often import existing ,models” (Informal)

Existing

Domain Notation Formalized

Language {.

Functional Features

Functional, no state at its core. Stateful Features

Purity + Effect Tracking
The usual types, literals and op’s

Various Conditionals
Functions and Blocks

Boxes (like Clojure’s ref)

Transactional Memory
State Machines

Interactors
No null, only opt<T>
Error Handling attempt<T|E-1,... E-n>
try <e> => <g> error <E-1> => <e-1> ... error <E-n> => <e-n>

Immutable Collections and higher-order functions

Enums, tuples, records, all immutable
Constraints on types and functions

Extensible/Embeddable through modular

language implementation and other means.

(Meta-) Tooling

Language Workbench
Open Source, by Jetbrains @LOJU @
AuOoil
Very Powerful —
Used for years by itemis and others OHB
SIEMENS

Vast Experience

@ workday

7 Y \VOLUNTIS
ZURICH Belastingdienst

S

MPS: Language Toolkit

Concepts, Properties, —
_generates 8 —»| Structure Inheritance, Relationships < Q
o =h
provides editors for S B
=3
—> Eaniousos I‘ »| Editor Projection Rules, Side o %
i guag Transformations, Intentions o O
= s
> o
w -]
@
= L]
extends 0..” 5 Type Typing Rules, Type 3 %
System Checks, Other Validatons S =
z |9
)
Con- Scopes, Usage Restrictions, <> Transfor- Reduction Rules, Weaving Spechies
straints Property Value Limitations mations Rules, Transformation Prios <priority 0..*

+ Refactorings, Find Usages, Syntax Coloring, Debugging, ...

MPS: Notational Freedom

MPS: Language Composition

Embedding

-+

Extension

-4
I'Base +

Extension Composition

< L

4

Verifying
Infrastructure

An Architecture For Smart Contracts

MPS / Convecton

DSL DSL DSL
Logistics Finance
E Executable Multi-Party Contract Language E
Ethereum
Hyperledger Z3

HTML
JavaScript
CSS

An Architecture For Smart Contracts

Verifying Blockchain Infrastructure

wh& Formal Semantics of the EVM in K

Sapiddeey https://www.ideals.illinois.edu/bitstream/handle/2142/97207/hilden
FAPT? brandt-saxena-zhu-rodrigues-guth-daian-rosu-2017-tr_0818.pdf

#@e IELE: Register-Based VM for the Blockchain

Sk https://runtimeverification.com/blog/new-technologies-for-the-blockchain-
xw? iele-virtual-machine-and-k-universal-language-framework/

gt ERC20-K: Formal Executable
2 Spec of ERC20

https://github.com/runtimeverification/erc20-semantics

ity Formal Verification for Solidity Contracts

https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts

An Architecture For Smart Contracts

DSL DSL DSL
Logistics Finance

Executable Multi-Party Contract Language

[e] o~ SYRE:
Ethereum ! o Javacsé(;”pt N
VM/Network yperleager

An Architecture For Smart Contracts

Validation

Ensure that the program does
the correct things, wrt. to the
requirements.

Verification &)

Ensure that the program perform:
correctly the things the program

text tells it to do.

Not the first community to realize ...

Sidebar: System Architecture m

Model Platform Adapter
Language Interpreter
Generator || Interpreter Loader

! 1
XML —@%@ﬁ XML

What good is all the abstraction if we cannot

trust the translation to the implementation?

Sidebar: System Architecture

Modeling Environment

Model

Language

Generator || Interpreter

|

XML

Network

Platform Adapter

Interpreter

Loader

1

XML

Tools may introduce additional systematic errors if faulty.
Safety standards require reliable mitigation of such errors.

Compensating

Requirements
Model M. Model M,
: Language : Language :
Random Error [s | S ——
Trafo T Trafo T, Random Error
Systematic Error

Transformation Engine +—m
Insufficient e Program CSC Tests +m

— Runtime System +—m

— Safe Architecture m

i i RTE -
System Model Mg tranifo!m System Implementation I
S:
I ensures I ensures
TeV Model M, transform TeV Implementation |;

A
P

FUZZING

Further Reading

https://medium.com/@markusvoelter/
dealing-with-mutable-state-in-kernelf-e0fdec8a489b

e A Smart Contract Development Stack

2 https://languageengineering.io/
a-smart-contract-development-stack-54533a3a503a

https://languageengineering.io/a-smart-contract-development-
3 ;& stack-part-ii-game-theoretical-aspects-ca7a9d2e548d

KernelF Reference
‘" http://voelter.de/data/pub/kernelf-reference.pdf

DSLs in Safety-Critical Development

http://voelter.de/data/pub/MPS-in-Safety-1.0.pdf

Contracts must be functionally correct
in order for stakeholders to trust them. _

We need better languages
to describe contracts in a meaningful way

Integration of verification tools
can be an important step to assure correctness

Simulation, Experimentation and Test
should be available in an interactive, local environment

Deployment to Blockchain is non-func,
it provides guarantees beyond functionality

Other deployments are useful,
that provide other trade-offs (secure |, fast{)

