
Markus Völter
voelter@acm.org
www.voelter.de
@markusvoelter

Language Stack
A

for implementing
Contracts

Context
1

An actual
contract,
executed

automatically.

Any
Turing Complete

Program
running on

a Blockchain.
over time

SMART CONTRACT

An actual contract,
executed automatically.

Multiple Parties.
Decision | |

Agreement | |
Coordination.

(Legally) Binding &
Trusted.

Formal Language.
Checkable.

Understandable.
„Event Tracking“

Progress over time

Contract
Definition

Contract
Execution

Contract
Definition

Contract
Execution

Understand Behavior
Functional Correctness

Non-Repudiability
Verified Behavior
Non-Gameability} BC

Blockchains
can provide certain

non-functional properties
to executable contracts.

Blockchains
are a suitable (partial)

implementation technology
iff these properties are needed.

Verification
Ensure that the program performs
correctly the things the program

text tells it to do.

Validation
Ensure that the program does
the correct things, wrt. to the

requirements.

Verification
Ensure that the program

performs correctly the things
the program text tells it to do.

Validation
Ensure that the program does
the correct things, wrt. to the

requirements.

Contract
Execution

Contract
Definition

Correct-by-Construction
The language/framework/

API/modeling tool doesn’t allow
a particular class of mistakes.

Analysis-and-Fix
You analyze the code/model after the

fact and try to find problems which
devs then fix.

Correct-by-Construction

Languages

Analysis-and-Fix

Analysis Tools

Formal Language.
Checkable.

Understandable.DSL
Domain
Specific
Language

Analysis Tools
Languages

Analysis Tools
Languages

State machines can always be checked
for dead states and unused transitions.

Decision tables must always be
overlap-free and complete.

Lots of History & Research

Computational Law
Obligation, Permission
Ordering, Causality, Time
Event, State

Lots of History & Research

Blockchains

Composing contracts: an adventure
in financial engineering
https://lexifi.com/files/resources/MLFiPaper.pdf

POETS Process-oriented event-driven
transaction systems
https://github.com/legalese/poets/blob/master/doc/
Henglein%20-%20POETS%20Process-oriented%20event-
driven%20transaction%20systems.pdf

https://github.com/legalese/poets/blob/master/
doc/hvitvedmaster.pdf

Domain-Specific Languages for
Enterprise Systems
https://bitbucket.org/jespera/poets/raw/c0ee7194ce57d2ad6ca8894c
8a44e88e546d5f4a/doc/poets-techreport/tr.pdf

Contracts in Programming and in
Enterprise Systems

Solution
2

Ethereum
VM/Network

Iulia

Hyperledger

Java

Executable Multi-Party Contract Language

DSL
Logistics

DSL
Finance

DSL
…

KernelF

MPS / Convecton

Distribution, Trust Correctness

Va
lid

at
io

n

Si
m

ul
at

io
n

Co
lla

bo
ra

tio
n

Ex
pr

es
siv

en
es

s

SMTLIB

Z3

HTML
JavaScript

CSS

Interaction, Integration

An Architecture For Smart Contracts

Generate to verification tools to build more
confidence beyond type checking.

Ethereum
VM/Network

Iulia

Hyperledger

Java

Executable Multi-Party Contract Language

DSL
Logistics

DSL
Finance

DSL
…

KernelF

MPS / Convecton

Distribution, Trust Correctness

Va
lid

at
io

n

Si
m

ul
at

io
n

Co
lla

bo
ra

tio
n

Ex
pr

es
siv

en
es

s

SMTLIB

Z3

HTML
JavaScript

CSS

Interaction, Integration

An Architecture For Smart Contracts

D E M O

Declarative Description

MultiPartyBooleanDecision
A declarative, configurable specification of
how a number of parties makes a (Boolean)
decision.

Execution and Test

A MPBD instance maintains the state of a
decision process as it evolves over time.

Here, we play with an instance in the
interactive REPL.

Combination with State Machines

More complex contracts are modeled as
state machines; events are the API.

Internally, the use BPBDs.

Combintation with State Machines II

Here, a transition action creates a new
AccessControl instance ...

The state of that instance is then used in
guard condition for the top level SM.

Preventing Game Theoretical Attacks

Only „valid“ senders can enter this state.

Events can only arrive at limited rate.

States must be entered turn-by-turn.

Ethereum
VM/Network

Iulia

Hyperledger

Java

Executable Multi-Party Contract Language

DSL
Logistics

DSL
Finance

DSL
…

KernelF

MPS / Convecton

Distribution, Trust Correctness

Va
lid

at
io

n

Si
m

ul
at

io
n

Co
lla

bo
ra

tio
n

Ex
pr

es
siv

en
es

s

SMTLIB

Z3

HTML
JavaScript

CSS

Interaction, Integration

An Architecture For Smart Contracts

I D E A

Example: HyperCSL

Blockchains

Lisp (Clojure) based internal DSL for specifi-
cation of general commercial contracts.

Inspired by Simon Peyton Jones and Jean-Marc
Eber and the POETS group at CPHU and ITU in
Denmark.

Uses Ken Adams’
Categories of Contract

Language as fundametal semantic building
blocks. Interpreter and UI in prototype stage.

Example: HyperCSL

Blockchains

Example: HyperCSL

Blockchains

A UI to visualize the interactive
execution of CSL contracts.

Tooling
3

Ethereum
VM/Network

Iulia

Hyperledger

Java

Executable Multi-Party Contract Language

DSL
Logistics

DSL
Finance

DSL
…

KernelF

MPS / Convecton

Distribution, Trust Correctness

Va
lid

at
io

n

Si
m

ul
at

io
n

Co
lla

bo
ra

tio
n

Ex
pr

es
siv

en
es

s

SMTLIB

Z3

HTML
JavaScript

CSS

Interaction, Integration

An Architecture For Smart Contracts

KernelF is an extensible functional
language used at the core of DSLs.

DSL Development

New Language

GPL Extension

Formalization

Reuse GPL incl. Expressions and TS
Add/Embed DS-extensions
Compatible notational style
Reduce to GPL

Analyze Domain to find Abstractions
Define suitable, new notations.
Rely on existing behavioral paradigm
Reuse standard expression language
Interpret/Generate to one or more GPLs

Use existing notation from domain
Clean up and formalize
Generate/Interpret
Often import existing „models“

KernelF

Functional Features

Functional, no state at its core.
Purity + Effect Tracking
The usual types, literals and op‘s
Various Conditionals
Functions and Blocks
No null, only opt<T>
Error Handling

Immutable Collections and higher-order functions
Enums, tuples, records, all immutable
Constraints on types and functions

Boxes (like Clojure‘s ref)
Transactional Memory
State Machines
Interactors

Stateful Features

Extensible/Embeddable through modular
language implementation and other means.

(Meta-) Tooling

Language Workbench
Open Source, by Jetbrains

Very Powerful
Used for years by itemis and others
Vast Experience

MPS: Language Toolkit

MPS: Notational Freedom

MPS: Language Composition

Verifying
Infrastructure

4

Ethereum
VM/Network

Iulia

Hyperledger

Java

Executable Multi-Party Contract Language

DSL
Logistics

DSL
Finance

DSL
…

KernelF

MPS / Convecton

Distribution, Trust Correctness

Va
lid

at
io

n

Si
m

ul
at

io
n

Co
lla

bo
ra

tio
n

Ex
pr

es
siv

en
es

s

SMTLIB

Z3

HTML
JavaScript

CSS

Interaction, Integration

An Architecture For Smart Contracts

Ethereum
VM/Network

Iulia

Hyperledger

Java

Executable Multi-Party Contract Language

DSL
Logistics

DSL
Finance

DSL
…

KernelF

MPS / Convecton

Distribution, Trust Correctness

Va
lid

at
io

n

Si
m

ul
at

io
n

Co
lla

bo
ra

tio
n

Ex
pr

es
siv

en
es

s

SMTLIB

Z3

HTML
JavaScript

CSS

Interaction, Integration

An Architecture For Smart Contracts

<x

TRUST?

Verifying Blockchain Infrastructure

Blockchains

Formal Semantics of the EVM in K
https://www.ideals.illinois.edu/bitstream/handle/2142/97207/hilden
brandt-saxena-zhu-rodrigues-guth-daian-rosu-2017-tr_0818.pdf

IELE: Register-Based VM for the Blockchain
https://runtimeverification.com/blog/new-technologies-for-the-blockchain-
iele-virtual-machine-and-k-universal-language-framework/

ERC20-K: Formal Executable
Spec of ERC20
https://github.com/runtimeverification/erc20-semantics

Formal Verification for Solidity Contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts

Ethereum
VM/Network

Iulia

Hyperledger

Java

Executable Multi-Party Contract Language

DSL
Logistics

DSL
Finance

DSL
…

KernelF

Distribution, Trust Correctness

Va
lid

at
io

n

Si
m

ul
at

io
n

Ex
pr

es
siv

en
es

s

SMTLIB

Z3

HTML
JavaScript

CSS

Interaction, Integration

An Architecture For Smart Contracts

Did I program/specify the right behaviors?

Will the infrastructure execute the behaviors faithfully?

Ethereum
VM/Network

Iulia

Hyperledger

Java

Executable Multi-Party Contract Language

DSL
Logistics

DSL
Finance

DSL
…

KernelF

Distribution, Trust Correctness

Va
lid

at
io

n

Si
m

ul
at

io
n

Ex
pr

es
siv

en
es

s

SMTLIB

Z3

HTML
JavaScript

CSS

Interaction, Integration

An Architecture For Smart Contracts

Did I program/specify the right behaviors?

Will the infrastructure execute the behaviors faithfully?

Not the first community to realize ... J

What good is all the abstraction if we cannot
trust the translation to the implementation?
Sidebar: System Architecture

What good is all the abstraction if we cannot
trust the translation to the implementation?

What good is all the abstraction if we cannot
trust the translation to the implementation?
Sidebar: System Architecture

Tools may introduce additional systematic errors if faulty.
Safety standards require reliable mitigation of such errors.

DO-178C EN50129 IEC62304 ISO26262

Risk Analysis

Mitigations – Safe Architecture

Wrap Up

Further Reading

Blockchains

Mutable State in KernelF
https://medium.com/@markusvoelter/
dealing-with-mutable-state-in-kernelf-e0fdec8a489b

A Smart Contract Development Stack
https://languageengineering.io/
a-smart-contract-development-stack-54533a3a503a

A Smart Contract Development Stack, Pt. 2
https://languageengineering.io/a-smart-contract-development-
stack-part-ii-game-theoretical-aspects-ca7a9d2e548d

KernelF Reference
http://voelter.de/data/pub/kernelf-reference.pdf

DSLs in Safety-Critical Development
http://voelter.de/data/pub/MPS-in-Safety-1.0.pdf

We need better languages

Integration of verification tools

Simulation, Experimentation and Test

to describe contracts in a meaningful way

can be an important step to assure correctness

should be available in an interactive, local environment

Contracts must be functionally correct
in order for stakeholders to trust them.

Deployment to Blockchain is non-func,
it provides guarantees beyond functionality

Other deployments are useful,
that provide other trade-offs (secure , fast)

