
Run your database like a CDN
Optimizing application performance for global users

Presented by Ben Darnell, CTO



Agenda
1. Background

2. The Journey of Movr

3. Replication, within and across regions

4. Conclusion



About CockroachDB
Distributed

Consistent

SQL

For transactional (OLTP) workloads

@cockroachdb



What is a CDN?

@cockroachdb



What is a CDN?
A Content Delivery Network is a global

network of servers and caches.

Commonly used for static content.

Data comes from the server closest to the

user.

@cockroachdb



Without a CDN, all tra�c goes to one place

@cockroachdb



The speed of light

80ms

270ms
170ms

250ms

280ms

@cockroachdb



With a CDN, servers are distributed around the world

@cockroachdb



CDNs improve latency for
static content
Why not the same for databases?

@cockroachdb



CDN updates
Relatively infrequent

Mostly centralized

Relaxed consistency

@cockroachdb



Database updates
Very frequent

Often customer-initiated

Application expects consistency

@cockroachdb



Evolution of distributed data
1990s: Replicate for fault-tolerance

2000s: Shard for scalability

@cockroachdb



Evolution of distributed data
1990s: Replicate for fault-tolerance

2000s: Shard for scalability

2018: Distribute for performance

@cockroachdb



A database is not just a place
to store data, it is a tool to get
that data where it is needed.

@cockroachdb



Agenda
1. Background

2. The Journey of Movr

3. Replication, within and across regions

4. Conclusion



About Movr
Movr is a �ctional vehicle-sharing startup 

�����⛸�
Launched in Amsterdam and expanding

globally

@cockroachdb



Movr's Data
Vehicle data

Tied to a city

Frequent updates

Read performance critical

User data

Often, but not always, in home city

Cached in app

@cockroachdb



Phase 1: The first city

@cockroachdb



Movr launched in Amsterdam with a single datacenter

@cockroachdb



Then replicated for high availability

@cockroachdb



Phase 2: Regional expansion

@cockroachdb



Latency is good from other European cities

�

�
�

�

�

�

@cockroachdb



Phase 3: The world!

@cockroachdb



Leaving servers in Europe has poor latency

@cockroachdb



Simply distributing servers has high replication latency

@cockroachdb



Solution: Replicate within regional sub-clusters

@cockroachdb



Agenda
1. Background

2. The Journey of Movr

3. Replication, within and across regions

4. Conclusion



Regional clusters could be completely separate
databases...

@cockroachdb



…but in CockroachDB they can be parts of one big cluster

@cockroachdb



Replication in CockroachDB
Looks like one logical database

Fine-grained control over data placement

Transactions can include data in di�erent

regions

@cockroachdb



Replication in CockroachDB
Each record has 3+ replicas

One is leader
Writes talk to a majority of replicas

Synchronous replication ensures fault

tolerance and consistency

Reads go to leader, guaranteed up to date

May not be nearest

@cockroachdb



Movr's vehicle data
Vehicle data is tied to a city, so keep it in

region

Global replication is OK for reads but makes

writes slow

@cockroachdb



Reads from Vancouver may be served from New York

�

70ms

@cockroachdb



Writes go to New York and Amsterdam

�
70 + 80 = 150ms

@cockroachdb



Configuring servers
ams1$ cockroach start ­­locality=region=eu 

nyc1$ cockroach start \ 

        ­­locality=region=usa ­­join=ams1 

tok1$ cockroach start \ 

        ­­locality=region=asia ­­join=ams1 

@cockroachdb



Partitioning vehicle data
CREATE TABLE vehicle ( 

    country STRING(2), 

    id UUID, 

    attrs JSONB, 

    PRIMARY KEY (country, id)) 

  PARTITION BY LIST (country) 

    europe VALUES IN ('nl', 'fr', 'de'...), 

    americas VALUES IN ('us', 'ca', 'mx'...);

@cockroachdb



Configuring replication
echo 'constraints: {"+region=eu": 3}' | \ 

    cockroach zone set movr.vehicles.europe 

@cockroachdb



Writes from Vancouver now go to Denver and New York

�

35 + 50 = 85ms

@cockroachdb



Movr's user data
User data could be replicated in their home

region or globally

Write performance is best in-region

Read performance better if global

@cockroachdb



Replicate user data globally
Writes are slow, but less frequent

Read performance depends on where the

leader is

@cockroachdb



Leadership follows the sun

@cockroachdb



The region with the most tra�c becomes leader

@cockroachdb



The region with the most tra�c becomes leader

@cockroachdb



The region with the most tra�c becomes leader

@cockroachdb



Agenda
1. Background

2. The Journey of Movr

3. Replication, within and across regions

4. Conclusion



Conclusion
Your users are global, your data should be

too

Think of geographic replication as a tool to

improve performance

Di�erent tables may need di�erent

replication strategies

@cockroachdb



Replicate within one region for high availability

@cockroachdb



Replicate across regions for reads that follow the sun

@cockroachdb



Replicate within separate regions for localized data

@cockroachdb



CockroachDB
Designed for global replication from the

ground up

Control where data is placed

Bring the data to the user

@cockroachdb



Thank you
https://www.cockroachlabs.com 

https://cockroa.ch/cdnlessons

Presented by Ben Darnell, CTO


