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About CockroachDB
Distributed

Consistent

SQL

For transactional (OLTP) workloads
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What is a CDN?
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What is a CDN?
A Content Delivery Network is a global

network of servers and caches.

Commonly used for static content.

Data comes from the server closest to the

user.
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Without a CDN, all tra�c goes to one place
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The speed of light
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With a CDN, servers are distributed around the world
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CDNs improve latency for
static content
Why not the same for databases?
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CDN updates
Relatively infrequent

Mostly centralized

Relaxed consistency
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Database updates
Very frequent

Often customer-initiated

Application expects consistency
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Evolution of distributed data
1990s: Replicate for fault-tolerance

2000s: Shard for scalability
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Evolution of distributed data
1990s: Replicate for fault-tolerance

2000s: Shard for scalability

2018: Distribute for performance
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A database is not just a place
to store data, it is a tool to get
that data where it is needed.
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About Movr
Movr is a �ctional vehicle-sharing startup 

�����⛸�
Launched in Amsterdam and expanding

globally
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Movr's Data
Vehicle data

Tied to a city

Frequent updates

Read performance critical

User data

Often, but not always, in home city

Cached in app
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Phase 1: The first city
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Movr launched in Amsterdam with a single datacenter
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Then replicated for high availability
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Phase 2: Regional expansion
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Latency is good from other European cities
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Phase 3: The world!
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Leaving servers in Europe has poor latency
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Simply distributing servers has high replication latency
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Solution: Replicate within regional sub-clusters
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Regional clusters could be completely separate
databases...
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…but in CockroachDB they can be parts of one big cluster
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Replication in CockroachDB
Looks like one logical database

Fine-grained control over data placement

Transactions can include data in di�erent

regions
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Replication in CockroachDB
Each record has 3+ replicas

One is leader
Writes talk to a majority of replicas

Synchronous replication ensures fault

tolerance and consistency

Reads go to leader, guaranteed up to date

May not be nearest
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Movr's vehicle data
Vehicle data is tied to a city, so keep it in

region

Global replication is OK for reads but makes

writes slow
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Reads from Vancouver may be served from New York

�

70ms
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Writes go to New York and Amsterdam

�
70 + 80 = 150ms
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Configuring servers
ams1$ cockroach start ­­locality=region=eu 

nyc1$ cockroach start \ 

        ­­locality=region=usa ­­join=ams1 

tok1$ cockroach start \ 

        ­­locality=region=asia ­­join=ams1 
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Partitioning vehicle data
CREATE TABLE vehicle ( 

    country STRING(2), 

    id UUID, 

    attrs JSONB, 

    PRIMARY KEY (country, id)) 

  PARTITION BY LIST (country) 

    europe VALUES IN ('nl', 'fr', 'de'...), 

    americas VALUES IN ('us', 'ca', 'mx'...);
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Configuring replication
echo 'constraints: {"+region=eu": 3}' | \ 

    cockroach zone set movr.vehicles.europe 
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Writes from Vancouver now go to Denver and New York

�

35 + 50 = 85ms
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Movr's user data
User data could be replicated in their home

region or globally

Write performance is best in-region

Read performance better if global
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Replicate user data globally
Writes are slow, but less frequent

Read performance depends on where the

leader is

@cockroachdb



Leadership follows the sun
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The region with the most tra�c becomes leader
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The region with the most tra�c becomes leader
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The region with the most tra�c becomes leader
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Conclusion
Your users are global, your data should be

too

Think of geographic replication as a tool to

improve performance

Di�erent tables may need di�erent

replication strategies

@cockroachdb



Replicate within one region for high availability
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Replicate across regions for reads that follow the sun
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Replicate within separate regions for localized data
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CockroachDB
Designed for global replication from the

ground up

Control where data is placed

Bring the data to the user
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Thank you
https://www.cockroachlabs.com 

https://cockroa.ch/cdnlessons
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