
Architecture in the Age of Things
Frank Buschmann, Gregor Hohpe

19.06.2018Page 2 © Frank Buschmann, Gregor Hohpe

Frank Buschmann
Siemens AG, Corporate Technology

Frank.Buschmann@siemens.com

Gregor Hohpe

info@EnterpriseIntegrationPatterns.com

19.06.2018Page 4 © Frank Buschmann, Gregor Hohpe

The future is already here,

it’s just not evenly
distributed yet.

William Ford Gibson

19.06.2018Page 5 © Frank Buschmann, Gregor Hohpe

Blurring of the physical and on-line world
Phones and watches are smart today, even dumb things become smart

19.06.2018Page 6 © Frank Buschmann, Gregor Hohpe

Blurring of the physical and on-line world
More complex things become smart

Source: Suresh Mandava

19.06.2018Page 7 © Frank Buschmann, Gregor Hohpe

Industry examples
Insurance

Source: Allianz SE

Automotive Telematics - Pay As/How you Drive

Home Automation and Security - Claim Prevention

19.06.2018Page 8 © Frank Buschmann, Gregor Hohpe

Industry examples
Energy and Mobility

Remote Control and Service

Remote Service
Travel Management

Traffic Management

Remote Service

Passenger Services

Source: Siemens AG

19.06.2018Page 9 © Frank Buschmann, Gregor Hohpe

Sensors

Technology advances helped distribute the future more evenly
Tipping points everywhere

Battery Power

Connectivity Low Power
Processors

Universal User
Interface

110010
101001
110110

Big Data
Analytics

Open Source
Software

Acceptance

19.06.2018Page 10 © Frank Buschmann, Gregor Hohpe

Now that the future is here how to design
systems in the age of the IoT?

19.06.2018Page 12 © Frank Buschmann, Gregor Hohpe

4+
Billion

connected
people

25+
Billion

connected
systems

50+
Trillion

Gigabyte of
data

Source: International Data Corporation (IDC) in 2020

Do you think you can control

19.06.2018Page 13 © Frank Buschmann, Gregor Hohpe

The IoT is an ultra-large-scale system
ULS will push far beyond the size of today’s systems by every measure

Decentralized Operations

Inherently Conflicting,
Unknowable, and Diverse
Requirements

Continuous Evolution and Deployment

Scale: code; users; data managed; connections
among software components; hardware elements

Heterogeneous,

Inconsistent, and

Changing Elements

Failure is the norm

Erosion of User /
System Boundary

19.06.2018Page 14 © Frank Buschmann, Gregor Hohpe

High-level view

Source: NASA/Apollo 17 crew; taken by either Harrison Schmitt or Ron Evans

The earth from the
view of Apollo 17
on December 7. 1972

19.06.2018Page 15 © Frank Buschmann, Gregor Hohpe

Base-line architecture sketch
Edge

(Smart) Sensors
and Actuators

Controllers and
Edge Devices

Gateway Cloud

Batch Analytics
Storage

Stream Analytics

Operations

B
usiness

A
pps

AppsApps

AppsAppsApps

AppsAppsApps

A
pps

A
pps

WAN

WAN

Cars
Trains
Grids
Machines
Factories

Phones
Wearables
Appliances

Data Flow
Control Flow

Apps

Apps

Apps

AppsApps

AppsApps

AppsApps Apps

Apps

Apps

Consumer

Apps

Apps

Apps

Apps

Industrial

19.06.2018Page 16 © Frank Buschmann, Gregor Hohpe

Industry vs. consumer interests
Edge

(Smart) Sensors
and Actuators

Controllers and
Edge Devices

Gateway Cloud

Batch Analytics
Storage

Stream Analytics

Operations

B
usiness

A
pps

AppsApps

AppsAppsApps

AppsAppsApps

A
pps

A
pps

WAN

WAN

Cars
Trains
Grids
Machines
Factories

Phones
Wearables
Appliances

Data Flow
Control Flow

Apps

Apps

Apps

AppsApps

AppsApps

AppsApps Apps

Apps

Apps

Consumer

Apps

Apps

Apps

Apps

Industrial
Industry Interests

Consumer Interests

Perform
safety critical and

real-time
industrial tasks

Provide
reliable,

high-quality
connectivity

Effectively manage
industrial services

Improve day to day
quality of life

Be always
connected

Improve breadth
and depth of
experience

Adapted from Moore Strategy & Insights

19.06.2018Page 17 © Frank Buschmann, Gregor Hohpe

Industry vs. consumer technical requirements
Edge

(Smart) Sensors
and Actuators

Controllers and
Edge Devices

Gateway Cloud

Batch Analytics
Storage

Stream Analytics

Operations

B
usiness

A
pps

AppsApps

AppsAppsApps

AppsAppsApps

A
pps

A
pps

WAN

WAN

Cars
Trains
Grids
Machines
Factories

Phones
Wearables
Appliances

Data Flow
Control Flow

Apps

Apps

Apps

AppsApps

AppsApps

AppsApps Apps

Apps

Apps

Consumer

Apps

Apps

Apps

Apps

Industrial

Application programming model

Industrial Technical Requirements

Consumer Technical Requirements

Reliable In-field Control
and Operations

Industry-Grade
Connectivity

Scalable and Flexible
Business Applications

Affordable & Stylish
Smart Things

Inexpensive
Connectivity

Usable Value Adds

 Power
 Latency
 Real-Time
 Throughput
 Accuracy

 Availability
 Safety
 Security
 Resilience
 User Experience

 Latency
 Throughput
 QoS guarantees
 Security
 Resilience

 Flexibility
 Evolvability
 Scalability
 Throughput
 Latency

 Accuracy
 Security
 Resilience
 User Experience

 Loose Coupling
 Rapid Development
 Ecosystems

 Flexible Deployment
 Continuous Delivery
 DevOps

 Price
 Ease-of-use
 Product design
 Power (user charges)
 Data privacy

 Price
 Easy Access
 Piggy-back
 Throughput
 Security

 Holistic User Experience
 Flexibility / Evolvability
 Integration into Ecosystem
 Security / Privacy

19.06.2018Page 18 © Frank Buschmann, Gregor Hohpe

Base-line Architecture

Photo from Pexels

Micro Services
Event-driven
Architectures
Integrated Runtime
Ecosystem
Readiness

19.06.2018Page 19 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Trade-offs in Allocating Application Logic

CloudGatewayEdge

Sensors
Actuators Controllers

Apps
Apps

Apps

Transmission

Apps

Real-Time, Low Latency
Safety-Critical

Autonomy

Complex Processing
Sophisticated Analysis

Expensive
Complex to Update

Cheap
Easy to Update

19.06.2018Page 20 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Microservice architecture style

Adapted from Sam Newman & Martin Fowler

• Focused on one thing
• Independently deployable
• “Dumb Pipe”
• Small enough, but not smaller
• Decentralized data

management

• All functions in a single
deployment

• Often scales only
vertically

• Service interfaces over
monolith(s)

• Integration of multiple
independent systems

• Data integrity through
transactions

ESB

19.06.2018Page 21 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Scalability

Image source: Martin Fowler

Scales independently
by distributing services

Scales by replicating
the application

Monolith Microservices

19.06.2018Page 22 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Microservices support shifting application logic along the continuum

 A modular architecture of independently deployable units enables shifting
logic along the continuum

 Virtualization and containerization help achieving the desired deployment
flexibility. Vision: build once, deploy anywhere

 Yet flexible app deployability is often limited by different run-time platforms
and architectures from edge to cloud

CloudGatewayEdge

Sensors
Actuators Controllers

Apps
Apps

Apps

Transmission

Apps

19.06.2018Page 23 © Frank Buschmann, Gregor Hohpe

Microservices is by no means a silver bullet though, and the design
thinking required to create a good microservices architecture is the
same as that needed to create a well structured monolith.

And this begs the question that if you can’t build a well-structured
monolith, what makes you think microservices is the answer?

Simon Brown

http://www.codingthearchitecture.com/presentations/devoxxuk2016-modular-monoliths

19.06.2018Page 24 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Resilience through asynchronous communication and event streaming

 Minimize coupling and dependencies to increase resilience and autonomy.

 Communication is slow and unreliable. Never block on remote communication.

 Beware of “retry storms” – simple error handling

If you are synchronous, you are not resilient

19.06.2018Page 25 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Asynchronous Communication architecture style

Asynchronous communication acknowledges the limitations of the underlying medium.

Systems send messages across Channels Simplified interaction

Channels have logical addresses Location Decoupling
Placing a message into the Channel is quick (“fire-and-forget”).
The Channel queues messages until the receiving application is ready Temporal Decoupling

Sender

Message
Channel
(Queue)

Receiver

Compact data formats,
e.g. ProtoBuf, Thrift

Persistent or transientLight-weight encoding

19.06.2018Page 26 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Eventing and event streaming architecture style

 Canonical model for sensor data.
 Events are often time stamped for analysis in a Time Series Database.
 Often OK to drop events. Alleviates need for retries.
 New events supersede old events.
 Patterns similar to messaging, often augmented by temporal patterns.

Command Message

Event Message

VerifyCreditCard
Credit

Service
Point-to-Point

Credit
Service

Pub-Sub
OrderReceived

Events shift logic towards the receiver. More loosely coupled.

Event Streaming
Temp.
Sensor

3.6º 3.7º 3.8º 4.1º
Threshold

Average 3.8º

>4!

19.06.2018Page 27 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Virtualization and containerization – two approaches for app delivery

 Suitable for all system architectures
 Supports legacy applications
 Security (hypervisor as barrier)
 Off-the-shelf technologies available

 Heavyweight (multiple OS)

 Limited deployment flexibility (Host OS dependencies)

 Suitable for apps and microservices
 Lightweight
 High deployment flexibility, DevOps friendly
 Off-the-shelf technologies available

 Security (OS vulnerabilities)
 Limited legacy support

19.06.2018Page 28 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
Industrial-grade, flexibly deployable IoT runtime for the cloud to edge continuum*

Runtime Environment

Container

A
pp

A
pp

Container

M
ic

ro
se

rv
ic

e

M
ic

ro
se

rv
ic

e

Container

M
ic

ro
se

rv
ic

e

M
ic

ro
se

rv
ic

e

Messaging / Eventing Communication Backbone

Process Image Common Svcs. QoS Networking

Security Multicore Resource Mgmt.

(Real-time) Operating System

Edge Gateway Cloud

O
pe

n
D

ev
el

op
m

en
tK

it

Apps and Microservices for
independent feature development

Separated Containers for
isolation and resilience

Built-in security for
trusted openness

QoS communication
for IoT integration

HW Virtualization
Resource budgeting

enforcement for resilience

Multicore support for
taking advantage of

computational power

* Complementary to cloud-native platforms

19.06.2018Page 29 © Frank Buschmann, Gregor Hohpe

Base-Line Architecture
IoT runtimes are ecosystem and DevOps enabled

A
pp

lic
at

io
n

Pa
rt

ne
rs

Standards

O
pen

Source

Technology
Partners

OSS and standards for
broadest commonality

Marketplaces

Open Development Kit for
defined and guided access

to Runtime Platform

Separated Containers for
isolation and resilience

Application Partners
Apps and Microservices for

independent application
development and deployment

Market Places for Application
Offering and Deployment

Common platform for
defined service execution

HW virtualization for
isolation and resilience

19.06.2018Page 30 © Frank Buschmann, Gregor Hohpe

IoT in a box
Amazon IoT

19.06.2018Page 31 © Frank Buschmann, Gregor Hohpe

Cloud

Photo by imagesthai.com from Pexels

Lambda
Architecture
Batch Data
Processing
Real-time Data
Processing

19.06.2018Page 32 © Frank Buschmann, Gregor Hohpe

Cloud
The Lambda Architecture* for big data processing and analytics applications

Batch
Recompute

Real-time
Increment

Precomputes results via
distributed processing of big

data. Aims at accuracy.

Stores output of batch and
speed layer. Responds to user

queries.

Processes data in real-time.
Sacrifices throughput to
achieve minimal latency.

All Data
(HDFS) Mapreduce

New Data
Stream

Process
Stream

Increment
Views

Real-time data
Real-time Views

Batch Views

Partial
Aggregate

Partial
Aggregate

Merge
Merged

View

Batch Layer

Speed Layer

Serving Layer

*Originally designed by Nathan Marz for Twitter; now adopted by many companies,

19.06.2018Page 33 © Frank Buschmann, Gregor Hohpe

Cloud
Multiple architecture styles define the Lambda architecture

Batch
Recompute

Real-time
Increment

All Data
(HDFS) Mapreduce

New Data
Stream

Process
Stream

Increment
Views

Real-time data
Real-time Views

Batch Views

Partial
Aggregate

Partial
Aggregate

Merge
Merged

View

Batch Layer

Speed Layer

Serving Layer

Map / Reduce

Publich/Subscribe
Observer

Command Processor
Command

Parallel Pipes and
Filters

19.06.2018Page 34 © Frank Buschmann, Gregor Hohpe

Cloud
Batch layer with Map / Reduce design (with Hadoop)

Structure and Behavior
 Data nodes manage data items and files regarding

parsing, partitioning, sorting, grouping data
 User functions create intermediate results from raw

data and final results from intermediate results
 Multiple Map / Reduce steps can be chained

Scalability and Performance
 Data management steps run on separate nodes
 User functions run on multiple nodes, processors,

cores, threads
 Data completeness ensures maximum accuracy of

results

19.06.2018Page 35 © Frank Buschmann, Gregor Hohpe

Cloud
Speed layer with Parallel Pipes and Filters design

Structure and Behavior
 Pipes transport data streams
 Filters perform data processing steps
 The Pipes and filters network defines the

data processing job
 Forks and joins are possible
 Filters start as soon as they receive data

Scalability and Performance
 Filters can run on different cores,

processors or nodes
 Filters can consist of multiple threads,

each of which runs on its own core
 Multiple filters with the same processing

task can run in parallel

Data
Source

Data
Source

Filter
(data processing step) Filter

(data processing step)

Filter
(data processing step)

Worker
Thread

Worker
Thread

Filter
(data processing step)

Data
Sink

System
Management

Process
Management

Job
Management

Pipe

Pipe
Pipe

Pipe Pipe

Pipe

Pipe

Pipe

Filter
(data processing step)

Filter
(data processing step)

Pipe

19.06.2018Page 36 © Frank Buschmann, Gregor Hohpe

Batch
Recompute

Real-time
Increment

All Data
(HDFS) Mapreduce

New Data
Stream

Process
Stream

Increment
Views

Real-time data
Real-time Views

Batch Views

Partial
Aggregate

Partial
Aggregate

Merge
Merged

View

Batch Layer

Speed Layer

Serving Layer

Cloud
Many off-the-shelf and open source realization technologies available

19.06.2018Page 37 © Frank Buschmann, Gregor Hohpe

Gateway

„STL Skyline 2007 crop (Gateway Arch)“ by Buphoff - http://commons.wikimedia.org/wiki/File:STL_Skyline_2007_edit.jpg. Licensed under CC BY-SA 3.0 via Wikimedia Commons

Gateway
Architecture

19.06.2018Page 38 © Frank Buschmann, Gregor Hohpe

Gateway
Bridging of separated communication networks, including protocol adaptation

G
atew

ay

Local Network

G
atew

ay

Local Network

G
atew

ay

Local Network

WAN

G
at

ew
ay

Other local networks

G
at

ew
ay

Other local networks

Control Room
Back-Office

Data Center

19.06.2018Page 39 © Frank Buschmann, Gregor Hohpe

Gateway
Acting as a proxy to connect dumb things to the IoT, making them intelligent

WAN

G
at

ew
ay

G
at

ew
ay

Control Room
Back-Office

Data Center

Gateway

Software Software

Software Software

19.06.2018Page 40 © Frank Buschmann, Gregor Hohpe

Gateway
Providing common services to things close to the field

Gateway

WAN

G
at

ew
ay

G
at

ew
ay

Control Room
Back-Office

Data Center

StorageAnalytics

Process (State)

19.06.2018Page 41 © Frank Buschmann, Gregor Hohpe

Gateway
The natural place for fog computing

Control Room
Back-Office

Data Center

WAN
Gateways

Fog

Cloud

19.06.2018Page 42 © Frank Buschmann, Gregor Hohpe

Edge

Photo by Rhy Davies: Beachy Head, East Sussex

Industrial vs.
Consumer IoT
Things of Things
Fail Operational
Things
Security and
Safety

19.06.2018Page 43 © Frank Buschmann, Gregor Hohpe

Edge
Industrial IoT versus consumer IoT

 Price - minimize local processing

 Push processing into smartphone

 Design

 Flexibility / Updates

 Resilience

 Safety

 Speed / real-time response

 Push processing into device (edge computing)

19.06.2018Page 44 © Frank Buschmann, Gregor Hohpe

Edge
Things of things enable scale and autonomy

Source: Siemens AG

19.06.2018Page 45 © Frank Buschmann, Gregor Hohpe

Edge
From Failure Accepted to Fail Operational

19.06.2018Page 46 © Frank Buschmann, Gregor Hohpe

Edge
Failures must result in degraded functionality, not in dysfunctionality

Fail-operationalFailure Accepted Fail-safe

Continue (degraded) service
delivery in case of failure:
 Failure of things is the norm
 Safe state would result in a

(set wise) global shutdown

On failure close apps and restart
 Accepted in consumer IT
 Doesn’t work where life is

endangered
 Will not work for IoT

Stop on failure, enter safe state
 Common practice in industry,

but burns money
 No op for process industry,

avionics, power,
 Unusable on frequent incidents

Source: Siemens AG Source: Siemens AGSource: Siemens AG

19.06.2018Page 47 © Frank Buschmann, Gregor Hohpe

Edge
Fail Operational = Resilience + Robustness

Concrete Applications must produce useful
results in case of
 Noise on input data, missing input data
 Loss of connectivity
 Resource degradation (time, memory. etc.)
 Failure of environment

Robustness of Applications

To maximize availability of an IoT System
and its constituent things
 When MTBF cannot be influenced, MTTR

must be minimal
 When IoT parts fail other IoT parts must

still work correctly

System Resilience

+

19.06.2018Page 48 © Frank Buschmann, Gregor Hohpe

Edge
Mix of known and novel security approaches are necessary to secure things

 Open system
 Highly dynamic – things join, leave, re-arrange

continuously
 Never consistent
 Heterogeneity

IoT key security challenges

 All known security techs apply
 Recursive security architecture:
 IoT entities are realized as secure “atoms” w/ defined

security interfaces & properties
 Composition of IoT entities results in an automatic

determination of aggregate security properties

IoT key security responses

Entity

+

19.06.2018Page 49 © Frank Buschmann, Gregor Hohpe

Edge
keep safety separate and make sure non-safety functions do not interfere

Distributed Control System (DCS) reference
architecture proposed by NAMUR

Strict separation via
separate hardware and no

cloud connectivity

Mixed criticality deployment via
virtualization or containerization

Non-Safety
Critical

Safety
Critical

High-Availabilty
Hardware

19.06.2018Page 50 © Frank Buschmann, Gregor Hohpe

Network

„Spinnennetz in Tannenspitze“ by Frank Liebig – Archiv, retired veterinarian. Frank Liebig. License under CC BY-SA 3.0 de via Wikimedia Commons

Protocols
Topologies
Semantics
Management

19.06.2018Page 51 © Frank Buschmann, Gregor Hohpe

Network
MQTT: easy to use, wide spread

PUB(topic)

Broker-based, light-weight, session-oriented publish-subscribe protocol
• Wire Format: Fixed Header (2+ bytes), Variable Header, Payload (blob)
• Data encoding: e.g. variable length fields
• Verbs (commands): CONNECT, PUBLISH, SUBSCRIBE
• Topic hierarchy and wildcards: sport/tennis/player1/score/Wimbledon
• QoS Levels: At most once, at least once, exactly once
• Encryption and authentication

Source

Subscriber

Subscriber

Broker

SUB(topic)

SUB(topic)

PUB(topic)

PUB(topic)(simplified)

Alternative: AMQP – focus on large-scale reliability, flexibility, and security

19.06.2018Page 52 © Frank Buschmann, Gregor Hohpe

Network
Time Sensitive Networking (TSN): quality of service

A set IEEE 802.1 standards to provide deterministic performance within standard Ethernet:
 Timing and Synchronization for Time-Sensitive Applications
 Frame Preemption
 Enhancements for Scheduled Traffic
 Path Control and Reservation
 Frame Replication and Elimination for Reliability

(Seamless Redundancy)
 Stream Reservation Protocol Enhancements and

Performance Improvements
 Cyclic Queuing and Forwarding
 Per-Stream Filtering and Policing
 Time-Sensitive Networking for Fronthaul

19.06.2018Page 53 © Frank Buschmann, Gregor Hohpe

Network
Many other standard communication protocols

The nice thing about
standards is that you have
so many to choose from

[Andrew S. Tanenbaum]

And many more

19.06.2018Page 54 © Frank Buschmann, Gregor Hohpe

Network
Different network topologies for different purposes

Point-to-point for
federated operations

Hub-and-Spoke for connecting
dumb things to smart hubs

Meshed for
task-oriented operation

Hierarchical for
modular and scalable operation

19.06.2018Page 55 © Frank Buschmann, Gregor Hohpe

Network
Semantics is essential for meaningful interaction between things

 OPC UA is an industrial interoperability standard.
 It allows to describe machine data in a computer-

readable form enriched with semantics

 The Web Ontology Language (OWL) is a family
of knowledge representation languages
 They are characterized by formal semantics.
 They are built upon the Resource Description

Framework standard

19.06.2018Page 56 © Frank Buschmann, Gregor Hohpe

Network
Software Defined Networking (SDN) automates network engineering and management

 Network control and data planes are explicitly separated
 A dedicated network control software (SDN controller) is directly (software)

programmable with defined network management policies
 The SDN Controller autonomously configures the physical network for each

requested communication service by applications
 Multiple deployments possible

Source: Open Networking Foundation

19.06.2018Page 57 © Frank Buschmann, Gregor Hohpe

The IoT Architect

Screenshot from the film “Matrix Reloaded”, 2003, Warne Bros Ltd.

The Architect
29th scene from
Matrix Reloaded

19.06.2018Page 58 © Frank Buschmann, Gregor Hohpe

Architectural Thinking for IoT Systems

Ultra-large Scale Distributed Resilience

Full Stack End-to-end Beyond Tech

You are not in control Concurrency, messaging, events Things will always be broken

Sensors, protocols, processors Edge to cloud Privacy, Liability

ldi r16, 0x01
out TCNT1H, r16

$$$

19.06.2018Page 59 © Frank Buschmann, Gregor Hohpe

Architectural Thinking for IoT Systems

No dedicated system
version

Apps / Services as
Deployment Unit

Deployment Flexibility

Feedback Loop to Dev

Evolution and Maintenance
by App/Service replacement Containerization / Virtualization

DevOps
Knowledge on real usage

Continuous Deployment /
Release trains

Container

App

Container

Micro
serviceMicro

service

App

Cloud

Gateway

Edge

A

E

B

F
C D

G H

A B D

C F G
H

19.06.2018Page 60 © Frank Buschmann, Gregor Hohpe

Architectural Thinking for IoT Systems

The true challenges in IoT are cultural

The courage to give up control
over the Internet of Things!

The understanding that we are not users,
but part of the Internet of Things.

Our responsibility to make the Internet
of Things a good place to live!!

Frank Buschmann
“Quo Vadis Software Architecture”, OOP 2011

19.06.2018Page 62 © Frank Buschmann, Gregor Hohpe

Technology advances helped distribute the future more evenly
Tipping points in hardware and software

110010
101001
110110

