

Introduction to SRE at Google
Christof Leng, cleng@google.com
June 2018

Speaker Introduction

● Christof Leng
● Site Reliability Manager at Google Munich
● Developer Infrastructure SRE

○ Responsible for Google's developer and CI/CD tools

● Researcher, politician, DJ

Why Reliability?

● It's the number one feature

Do you prefer Gmail 2010?

Or Gmail 500?

Reliability is easy to take for granted

● It’s the absence of errors
● Obviously unstable == too late
● You need to work at reliability all the time

○ Not just when everything’s on fire

● The SRE Organization is separate from feature development
● SRE teams are organized around a single service or a collection of related

services or technologies

SRE Organizational Structure

Dev and Ops

● Don't Dev and Ops always fight?
○ Dev wants to...

■ ...roll out features fast
■ ...and see them widely adopted

○ Ops wants...
■ ...stability so they don't get paged

And just to make it harder...

● Information asymmetry is extreme
● Ops doesn’t really know the code base
● The team which knows the least about the code...

○ ...has the strongest incentive to object to it launching

Is conflict inevitable?

No :-)

● SRE doesn’t attempt to assess launch risk,
● or set release policy,
● or avoid all outages

Then what?

● Error budgets!
● But you first need an SLO!

● Service Level Indicator (SLI): a quantitative measure of an attribute of the
service. It's a metric that users care about, such as:
○ availability
○ latency
○ freshness
○ durability

● Service Level Objective (SLO): SLI @ specific target (99.9% availability = �)
● Service Level Agreement (SLA): SLO + consequences (99% availability = ☹)

Service Level .*

100% SLO

<100% SLO

● Google doesn't run at 100% SLO
● Impossible to achieve
● Very expensive

https://pixabay.com/en/laptop-black-blue-screen-monitor-33521/
https://pixabay.com/en/computer-desktop-workstation-office-158675/

Error Budget

● 1 - SLO
● Example

○ SLO: 99.9%
○ Error budget: 100% - 99.9% = 0.1%
○ Can spend this
○ For a 1 billion query/month service

■ 1 million "errors" to spend

What do you spend your budget on?

● Change is #1 cause of outage
● Launches are big sources of change
● Solution: Spend error budget on launches!

○ … or spend it on service instability :(

The rule

● Error budget > 0, launch away
○ Clearly DEV team is doing a good job

● Error budget < 0, launch freeze
○ Until you earn back enough error budget

Two nice features of Error Budgets

1. Removes major source SRE-DEV conflict
a. It’s a math problem, not an opinion or power conflict

2. DEV teams self-police because they are not monolithic

Staffing, Work, Ops Overload

● At the core, you can throw people at a badly-functioning system and keep it
alive via manual labor

● That job isn't fun
○ Google doesn't ask SREs to do it

But it’s soooo tempting?

● What I see is all there is
● Can’t see operations work = doesn’t exist
● It’s another incentives problem

Fix 1: Common Staffing Pool

● One more SRE = one less developer
● The more operations work...

○ ...the fewer features

● Self-regulating systems win!

Fix 2: SRE hires only coders

● They speak the same language as DEV
● They know what a computer can do
● They get bored easily

Fix 3: 50% cap on Ops work

● If you succeed, traffic increases
● Toil scales with traffic
● Write software to reduce toil
● Leave enough time for serious coding

○ ...or drown,
○ ...or fail

● “What I see is all there is”
● Dev team sees the product in action
● Not all teams do this though

Fix 4: Keep DEV in the rotation

Fix 5: Speaking of Dev and Ops work...

● Excess operations load gets assigned to the dev team
○ tickets, oncall, etc.

● Another self-regulating system :)

Fix 6: SRE Portability

● No requirement to stick with any project
○ No requirement to stick with SRE

● Build it and they will come
○ Bust it, and they will leave

● The threat is rarely executed, but it is powerful

1. Single staffing pool
2. Hire coders
3. Ops work < 50%
4. Dev involved in operations
5. Excessive toil → Dev
6. Mobility

Limiting operational work

Death, taxes, and outages...

● SLO < 100% means that there will be outages
○ This is OK. Not fun, but OK

● Two goals for each outage:
○ Minimize impact
○ Prevent recurrence

Minimize Damage

● Make the outage as short as possible
● No NOC
● Good diagnostic information

A word on practice...

Operational readiness drills aren’t cool.

You know what’s cool?

Wheel of Misfortune!

One of our most popular SRE events.

● Step 1: Handle the event
● Step 2: Write the post-mortem
● Step 3: Reset

Prevent recurrence

Post-mortem philosophy

● Post-mortems are blameless
● Assume people are intelligent, well-intentioned
● Focus on process and technology

● Create a timeline
● Get all the facts
● Create bugs for all follow-up work

Google's SRE Website

● https://www.google.com/sre
● More resources
● Articles
● Videos

https://www.google.com/sre

O'Reilly Book

● Site Reliability Engineering
● How Google Runs Production Systems
● landing.google.com/sre/book.html

https://landing.google.com/sre/book.html

● Reliability is the most important feature
● SRE = a dedicated team focused on reliability

○ Software engineering, consulting, on-call

● SLO is the target. Error budget is there to be spent
○ Divert SWE resources to reliability when you run out of error budget

● Limiting operational work
● Incident response and postmortems

Questions on any of these?

