
Pragmatic Event-Driven 
Microservices
Allard Buijze
@allardbz – allard@axoniq.io



Service

Service

Service



‘Normal’ SQL QUERY

22 JOINS 6 SUBQUERIES



Layered architecture
User Interface

Service Layer

Data Access Layer

D
o

m
a
in

 M
o
d

e
l

Method invocation Cache

Worker pools

Web 

Cache

Session replication

Distributed 2nd level cache Query Cache







Source: http://www.sabisabi.com/images/DungBeetle-on-dung.JPG



AxonFramework



Command Query Responsibility 
Segregation

Command 

model
Projections

Client

Events



Monoliths

St Breock Downs Monolith - www.cornwalls.co.uk



Microservices vs Monoliths

Microservices system

Almost all the cases where I've heard of a system that was built as a

microservice system from scratch, it has ended up in serious trouble.

Monoliths

Almost all the successful microservice stories have started with a

monolith that got too big and was broken up

Martin Fowler

Source: http://martinfowler.com/bliki/MonolithFirst.html



Are you tall enough?

Source: martinfowler.com/bliki/MicroservicePrerequisites.html



Noun Driven Design

Noun? → Service!



Noun Driven Design

OrderService



Noun Driven Design

CustomerService



Noun Driven Design

ProductService



Noun Driven Design

InventoryService



Noun Driven Design

➔



$



Location transparency

A Component should not be aware, nor make any 

assumptions, of the location of Components it 

interacts with

A component should neither be aware of nor make any 

assumptions about the location of components it interacts with.

Location transparency starts with good API design 
(but doesn’t end there)



‘Event-Driven’ Microservices
• Event Something has happened



‘Event-Driven’ Microservices

Need to know

ordered items
Order service

OrderCreated→

ItemAdded→

ItemRemoved→

OrderConfirmed →



Or worse…

Shipping 

Service
Order service

OrderCreated→

 InventoryConfirmed

ReadyForShipping →

 OrderShipped

Payment service

OrderPaid→

 ReadyForPayment



Reasons to send a message
• Event Something has happened

• Command I want the system to do something

• Query I want to know something



Something has happened - Event
• Data change

• Deadline passing

• Or anything else that’s relevant in the domain



Want to know

Want to know

Want to know
Something 

happened!

Publish-subscribe 



One of us 

wants to know

Want to know

One of us 

wants to know

Something 

happened!

Exclusive consumers



One of us 

wants to know

Want to know

One of us 

wants to know

Something 

happened!

Competing consumers



One of us 

wants to know

Want to know

One of us 

wants to know

Something 

happened!

Balanced consumers

If (%)



I want something done -
Command
• Request-a-side-effect

• Change data / application state

• Send email

• Exactly 1 destination

• OK / NOK reply

• Maybe some data



Can do 

something

Can do 

something

Can do 

something
Do something!

Command Routing



Can do 

something

Can do 

something

Can do 

something
Do something!

Command Routing

if (%)



I want to know something -
Query
• Desire for information

• The response has more value than the question

• (Usually) side-effect free

• Different messaging patterns
• Single destination

• Scatter – gather query

• Subscription



Price = 49Result = Price

Query – point to point



Price = 199

If (…)

Price = 149

Query – scatter-gather 

Result = Min(Price)

(wait 100ms)



Price = 199

If (…)

Price = 149

If (…)

Price = 99

Query – scatter-gather 

Result = Min(Price)

(wait 100ms)



Query – subscription 

Price = 49
Result = Price + 

sum(Δ)
Price = 39

Δ = -10



OrderConfirmed →

‘Event-Driven’ Microservices

Need to know

ordered items
Order service

ItemAdded→

ItemRemoved→

OrderConfirmed →

OrderCreated→

 GetOrderDetails

OrderDetails→



Events retain value
Event Sourcing is an Architectural pattern in which Events are considered 
the “source of truth”, based on which components (re)build their internal 
state.



Event Store
An Event Store stores the published events to be retrieved both 

by consumers as well as the publishing component itself.



OrderConfirmed →

Event Sourcing

Some smart 

analytics
Order service

ItemRemoved→

OrderCreated→

OrderDetails→



Event Store operations
• Append

• Validate ‘sequence’



Event Store operations
• Full sequential read



Event Store operations
• Read aggregate’s events



1. Define which routing patterns to apply

2. Choose technology/protocol accordingly



At scale, different rules apply



How do you route all these 
events to all components?

How will this scale?



You Don't! 

It Won't!



Unmanageable mess
Order Created

Item Added to Order

Shipping Address Added

Billing Address Added

Order Confirmed

As shipping 

module, I want to 

know when an 

order is placed



Bounded context
Explicitly define the context within which a model applies. 
Explicitly set boundaries in terms of team organization, usage 
within specific parts of the application, and physical 
manifestations such as code bases and database schemas. Keep 
the model strictly consistent within these bounds, but don’t be 
distracted or confused by issues outside.



Within a context, share 
‘everything’



Between contexts, share 
‘consciously’

As shipping 

module, I want to 

know when an 

order is placed

Order Created

Item Added to Order

Shipping Address Added

Billing Address Added

Order Confirmed

Order Created

+ Item Added

+ Order Confirmed

→ Order Placed



Between contexts, share 
‘consciously’

As shipping 

module, I want to 

know when an 

order is placed

Order Created

Item Added to Order

Shipping Address Added

Billing Address Added

Order Confirmed

Order Confirmed

+ Get Order Details

→ Order Placed



Where does AxonFramework fit?
• Inside each component in bounded context

• Axon provides the Java APIs towards platform

• EventBus, CommandBus, QueryBus

• Separation of business logic and infrastructure logic



Microservices Messaging



“Just enough” intelligence

dumb smart

Message Broker

Sends messages. Main 

value add is reliability. 

Enterprise Service Bus

Understands message 

content. Hard to configure 

and maintain.

AxonHub

Understands difference between Commands, 

Events, Queries and their routing patterns. 

Does not care about the content of these 

messages.



Our mission

Provide the APIs and implementations necessary for event-
driven microservices to cooperate harmoniously, allowing each 
of them to focus on the business logic.


