
Paul Johnston - @PaulDJohnston Twitter/Medium

When should you use a Serverless Approach?

Thoughts from a pragmatic CTO about
when and how to use Serverless

Paul Johnston
CTO of Movivo

@PaulDJohnston on twitter and medium

(There will be time for questions later…)

Paul Johnston - @PaulDJohnston Twitter/Medium

Movivo

Paul Johnston - @PaulDJohnston Twitter/Medium

AWS Lambda

18 months

Paul Johnston - @PaulDJohnston Twitter/Medium

AWS Lambda

Not the only way of doing serverless

Paul Johnston - @PaulDJohnston Twitter/Medium

When should you use Serverless approach?
tl;dr Most of the time (99% probably)

Paul Johnston - @PaulDJohnston Twitter/Medium

What *is* the Serverless Approach?
FaaS* instead of “Servers”

Lots of Services
Event Driven
Distributed
Scalable

More Ops than Dev
* FaaS = Function as a Service

Paul Johnston - @PaulDJohnston Twitter/Medium

What *is* the Serverless Approach?
It’s the bleeding edge of

Cloud Native

(but I would say that)

Paul Johnston - @PaulDJohnston Twitter/Medium

Serverless
“Super Advanced Cloud”:

Functions
Events

Services

Paul Johnston - @PaulDJohnston Twitter/Medium

Quick mention: Serverless Framework
Not the only way of doing Serverless

but it might work for you.

When doing this talk, mainly talking about Events
+ Functions + Services, and AWS and not the

framework

Paul Johnston - @PaulDJohnston Twitter/Medium

When should you use Serverless?
Well, let’s get into the details of the approach…

…then answer that question

Paul Johnston - @PaulDJohnston Twitter/Medium

How we used to do it
Physical Servers
Virtual Servers

Instances
Managed instances

Containers

Paul Johnston - @PaulDJohnston Twitter/Medium

The “Server” Proposition
Servers are essentially still there

Frameworks
Considered a solved problem

15+ years of “progress”

Paul Johnston - @PaulDJohnston Twitter/Medium

The Server Problem
They are your servers

You need to maintain them
Almost invariably monolithic

Entrenched Thinking
Long term cost

Paul Johnston - @PaulDJohnston Twitter/Medium

FaaS, Infrastructure and Services
No longer your servers

More complex to manage
More reliant on third parties

Reduced Maintenance

Paul Johnston - @PaulDJohnston Twitter/Medium

But…
Serverless is still new

Some pioneers
Hesitancy in many

Patterns are still to emerge
Scale is easy and hard

Paul Johnston - @PaulDJohnston Twitter/Medium

CTOs like challenging this
CTOs are an interesting bunch
But they’re usually the pioneers

and they often ask the best questions

Paul Johnston - @PaulDJohnston Twitter/Medium

Function as a Service (FaaS)
Very new idea (unless
you’re Simon Wardley

or Google)
No simple analogue

“A bit like crack”
Still pioneering

Cost (mostly)
Decouples logic

Encourages
distributed thinking
Errors are contained

Scale
No bulky “frameworks”

Paul Johnston - @PaulDJohnston Twitter/Medium

Events and Queues
Known but forgotten

Microservices
Feels like “backward

step”
Difficult concept for

developers

Efficient
Asynchronous by

default
Hot swappable FaaS
Hardest part - most

valuable

Paul Johnston - @PaulDJohnston Twitter/Medium

Data
RDBMS first (often)
Frameworks often

means ORMs (ugh)
Over complexity

Events force
distributed thinking
Data driven design

Store what you need
Optimise for write/read
Data at Rest/in motion

Paul Johnston - @PaulDJohnston Twitter/Medium

Infrastructure
“Servers”

Security patches
Maintenance

Testing environments
(containers)

DevOps

Infrastructure as Code
More moving parts

Harder to test
(currently)

Easier to train newbies
OPS(dev) not DevOps

Paul Johnston - @PaulDJohnston Twitter/Medium

Security
Constant challenge
“Server” approach

known
Lots of tools
People cost

Provider patches
servers

Smaller code base
Service provider may

access data
DoS handled by

provider

Paul Johnston - @PaulDJohnston Twitter/Medium

Deployment and CI/CD
Known tools

DevOps people
Few tools for

serverless out there
Infrastructure concern

often separated

“Roll your own”
More Ops than Dev

Staged deploys hard
Harder to canary, blue/

green etc
Service Mesh? Event

Routing?

Paul Johnston - @PaulDJohnston Twitter/Medium

Testing
Lots of tools on market

Solved problem?
Developers over rely

on it?

Unit testing easy
Other testing different

and easier?
Test Boundaries

Change
Need infrastructure as
code to do it effectively

Paul Johnston - @PaulDJohnston Twitter/Medium

People
Developers often do

frameworks
Several “go to”
technologies

Smaller codebase
Easier to understand

Different skills
Easier to onboard

Productive fast

Paul Johnston - @PaulDJohnston Twitter/Medium

Vendor lock-in
Containers are easy to

move
Servers are pretty
much the same

everywhere

It’s service lock-in
But events allow you to

switch
Choose providers

more carefully
Analytics, logging etc

best of breed

Paul Johnston - @PaulDJohnston Twitter/Medium

Maintenance
Servers
Patches
Security

Constant threats
Upgrades

Your service provider
does the servers

You handle your code
Smaller codebase

Maintain Infrastructure
as Code

Paul Johnston - @PaulDJohnston Twitter/Medium

Pros and Cons of Serverless
Pros:

Maintenance
Scale
Cost

Efficiencies
Infrastructure

Security

Cons:
Testing

Infrastructure
3rd Party Services

Paul Johnston - @PaulDJohnston Twitter/Medium

So we know what Serverless is…
… but when should you use it?

Paul Johnston - @PaulDJohnston Twitter/Medium

Most of the time
It’s an appropriate solution for most of the

client/server based solutions I’ve seen

In fact, I reckon 99% of solutions could move to
this approach

But…

Paul Johnston - @PaulDJohnston Twitter/Medium

#1: Real time systems
Latency introduced through service usage
Cold-start can add some time (not much)

But most “real time” is not actually real time.
You can usually get away with request-response

for most things

Paul Johnston - @PaulDJohnston Twitter/Medium

#2: Compute Intensive tasks
Serverless services limited by compute

Consider how service runs

Better to use an Instance
or a physical server for this

Or split into sequential/parallel tasks (Serverless)

Paul Johnston - @PaulDJohnston Twitter/Medium

#3: Very mission critical systems
(at least without thinking first)

You’re still working on someone else’s systems
What if they go down? (AWS + S3?)

It’s still your service
It is possible to consider failover but it’s hard

Caching and functionality at edge

Paul Johnston - @PaulDJohnston Twitter/Medium

#4: Where you need control
You lose control over things like:

Configuration (of systems)
Issue resolution (3rd parties fix it when it’s fixed)

Security (e,g. data for regulatory needs)

Paul Johnston - @PaulDJohnston Twitter/Medium

When should* you use Serverless approach?

tl;dr Most of the time (99% probably)

*or maybe it should be “could”

jeffconf.com @jeffconf
Serverless community conference: London 7th July 2017

http://jeffconf.com

Paul Johnston - @PaulDJohnston Twitter/Medium

Thank you.
Any questions?

Paul Johnston
CTO of Movivo

@PaulDJohnston on twitter and medium

When should you use a Serverless Approach?

