Resilience Engineering in a
microservice landscape

Maurice Zeijen

@

bol.com
inkel van ons all

de wi

emaal

Let me introduce myself

Maurice Zeijen

Java developer for over 10 years

Lead Software Architect @ bol.com

bol.com@

This is bol.com

bol.com is one of the most popular webshops in The Netherlands and Belgium sinds 1999.

Visits per month:
Products:

Active Customers:
Partners:

Private sellers:
Employees:

IT engineers:

N

> 28 million
> 14 million
> 7 million
> 16.500

> 180.000
>1.200

> 350

i Google Jé

1117

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

What am I going to talk about?

e What is resilience?

e Why do we need resilience?

e Implementing resilience with Hystrix
e Resilience techniques

e Tips & tricks

e Operations

e Experiences @ bol.com

e Wrapup

What is resilience?

The ability of a substance or object to spring back into shape.

‘ The capacity to recover quickly from difficulties.

— Merriam Webster

Resilience in IT systems

L 1L)0 7

S TSEE The ability of a system to handle unexpected situations:
Flliiiry B11¢(L

1111101001000 | _ e without the user noticing it

U100010%001111 e with a graceful degradation of service
0000001101000
1001000111111
n010011KE8°

e automatically recovering, as if it never happened

Resilience in a (micro)service landscape

bol.com Webshop

Direct
communication
via REST

‘ Product service I ‘ Search service I ‘ Review service I 40+ other
services

55
. St ¥ wﬂ e h ¥ Wﬁ u>>-m,m_.....:ﬁﬁ

Why do we need resilience? 2!
M
Failures in today’s complex, distributed, interconnected systems are not the exception. J_{ﬂf;;

They are the normal case. redl

Complexity at bol.com

+50 User facing applications
+1 20 Backend services

60 IT Teams

All interconnected in some way or anothetr...

What could possible go wrong?

Services fail and go down.

New versions of services can have bugs
or are not backwards compatible.

Network connections degrade or fail.
Client libraries have bugs and misbehave.

Services become slow.

Latency: Destroyer of distributed systems

: %

\ i . ; . .' o '
. " \\
»

x Yd

Latency can cause cascading failures across multiple systems,
even if they are only loosely connected.

Hurricane lke, september 2008, Texas |
Only one house survived because it was build for hurricane conditions. =

5

4 - 3 = z P — . - -
' - P L 7 o O P = N - L

BT, . T it
i G\ Tl W

Implementing resilience with Hystrix
- HYSTRIX

DEFEND YOUR APP

/ (/)
7))

D
2

Hystrix:
¢ iS a open-source Java latency and fault tolerance library from Netflix.
e is designed to isolate points of access to remote systems and libraries.
e provides the means to handle failures gracefully.
¢ measures everything you want to know of it's execution.

e is relatively easy to use.

There are similar libraries for other non-jvm languages.

NETFLIX

Where to apply the resilience techniques with Hystrix

Users

Application

Backend
services

50 RPS

| Load generator |

50 RPS

-

Product list page

We b ShOp Product detail page

/('

k HYSTRIX
Product service client

HYSTRIX

Review service client

|

|

Product serv

N e >
ice Review service ’“}

Hystrix flow

LO—CO)—+— no: return result

é report metrics

Calculate resource health |[<----------r--

, Circuit Semaphore ;
Execute Hystrix breaker no / Thread pool no —» Call resource
— command open? rejected? :
A
yes, yes,
short-circuit reject
Execution
yes failed?
No
Execute fallback -
no, failed or not Fallback :
’ I o T U
>< implemented Successful? yes Timeout:
-E—®—+— yes; return fallback

Hystrix command

—» Execute Hystrix

— command - Call resource

A

L(O—O—+— return result

Implementing a Hystrix command

public class GetReviewsCommand extends HystrixCommand<List<Review>> ({

private final ReviewClient reviewClient;
private final String productId;

public GetReviewsCommand(ReviewClient reviewClient, String productId) {
super (
Setter.withGroupKey (HystrixCommandGroupKey.Factory.asKey("review"))
.andCommandKey (HystrixCommandKey.Factory.asKey("GetReviews"))
) i
this.reviewClient = reviewClient;
this.productId = productId;

}

@Override
protected List<Review> run() throws Exception {
return reviewClient.getReviews (productId);

}
}

e You need to implement a command for every resource endpoint.

e Non-blocking clients are also supported by implementing the HystrixObservableCommand.

Execution a command

// Synchronous, blocking
List<Review> reviews = new GetReviewsCommand(client, productId).execute();

// Asynchronous, blocking, with a Future
Future<List<Review>> reviews = new GetReviewsCommand(client, productId).queue();

/// Do some other things
List<Review> reviews = reviewsFuture.get();

// Asynchronous, blocking, with Observables
Observable<List<Review>> reviews = new GetReviewsCommand(client, productId).observe();

reviewsObservable.subscribe(reviews -> {
// do something with the reviews

})i

// Asynchronous, non-blocking stream with Observables
Observable<Review> reviews = new GetReviewStreamCommand(client, productId).observe();

reviewsObservable.subscribe(review -> {
// do something with the each review

})i

- Create a new command for every call. - CompletableFuture is not supported.

- Only RxJava 1 is supported. - Backpressure is not supported.

Resilience techniques

Fallback

Timeouts

Bulkheading & load shedding
Health insights

Circuit breaker

Graceful degradation with the fallback

A fatal exception BE has occurred at BBAZB8:CHA11E36 in UXD UMM(HL1) -+
HBB1BE36. The current application will be terminated.

= Press any key to terminate the current application.

Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

Goal of the fallback

Giving your user the best possible experience when your system is having issues.

N vy /
Hide the feature — Fail silent \ . /
Use a default — Static fallback \\ /

" /

N

N
Use an alternative — Stubbed fallback or fallback via network N FA LL BACK :

If a fallback makes no sense — Fail fast B D
— ~

= A NovEL BY LE'GH STE'N N

e "BEAUTIFUL, FUNNY, THRILLING, AND TRVE.”
—GARY SHTEYNGART, AVTHOR OF

/ SUPER SAD TRUE LOVE STORY
/ 7/ /1 v\

Failures & fallback

—» Execute Hystrix
—— command

no, failed or not
implemented

yes; return fallback

Execute fallback

Fallback
Successful?

yes

Call resource

Execution
failed?

no; return result

Stubbed fallback example

The product list title is created by a service based on the product category and selected filters.

Verkopen Zakelijk Cadeaubon Inloggen Bestelstatus Lijstjes Klantenservice s Vv

bOI.com@ Waar ben je naar op zoek? Computer v = Zoeken

Kies een categorie v Word lid van Select Moederdag Outlet Aanbiedingen

Gratis verzending vanaf 20 euro, gratis retourneren, bezorging waar en wanneer je wilt met Select B artikelen*

Type gebruik A Laptop voor Films en Series

e Wil je graag films en series kijken op je laptop? De laptops uit deze categorie beschikken over een Full HD-
scherm, zodat films en series in hoge kwaliteit worden weergegeven. Bovendien is het ook prettig voor het
Dagelijks gebruik (386) bekijken van foto’s of websites. Deze groep laptops is prima geschikt voor dagelijks gebruik.

Zakelijk gebruik (331) /’

...

Uitleg & kiezen

315 resultaten Sorteer op: Beoordeling v| =

Gaming (257)

, , Gekozen filters: Films en series bekijken T Wis alle filters
Foto- en videobewerking

(125)

Studeren (basisgebruik)
(111)

wrr i i, | ——— '
krachtig) 3) 1 . i— =

Stubbed fallback example

Service fails: fallback the title to just the product category name.

Verkopen Zakelijk Cadeaubon Inloggen Bestelstatus Lijsties Klantenservice e v

bOI.com@ Waar ben je naar op zoek? Computer v | Zoeken

Kies een categorie v Word lid van Select Moederdag Outlet Aanbiedingen

Gratis verzending vanaf 20 euro, gratis retourneren, bezorging waar en wanneer je wilt met Select B artikelen*

Type gebruik A Laptops

Uitleg & kiezen @ 315 resultaten Sorteer op: | Beoordeling v | =

Dagelijks gebruik (386)

Zakelijk gebruik @31 Gekozen filters: Films en series bekijken W Wis alle filters

(V) Films en series bekijken
Gaming (257)

Foto- en videobewerking
(125)

Studeren (basisgebruik)
(111)

Studeren (grafisch
krachtig) (3

When a fallback probably makes no sense

Some cases when you probably don't want a fallback:

e For write operations
If a write fails, you probably want the failure to propagate back to the caller.

e For batch or offline operations
If your Hystrix command is starting a batch job or some other offline computation, it's usually more

appropriate to propagate the error back to the caller.

e Within backend services
Often it is not possible choose an appropriate fallback within a backend service. Those commands should

fail fast, return a decent error message and let the user-facing application provide the fallback, or they
apply a fallback and add meta data to the response that the fallback was applied.

Implementing the fallback within the HystrixCommand

public class GetReviewsCommand extends HystrixCommand<List<Review>> ({
// Fields and constructor

@Override
protected List<Review> run() throws Exception {
return reviewClient.getReviews (productId);

}

@Override
protected List<Review> getFallback() {
return Collections.emptyList();

}

Other forms of a fallback or when not fallback

If no fallback is implemented or the fallback throws an exception then the Command itself will throw a
HystrixRuntimeException.

try {
Observable<Review> reviews = new GetReviewsCommand(client, productId).execute();

} catch (HystrixRuntimeException e) {
Exception actualException = e.getCause();

// Do something usefull with the real exception.

}

Protecting against latency

)

Loading

Latency

—» Execute Hystrix > Call
- command all resource
A
Execution
yes failed?
no
Execute fallback
3¢ no, failed or not Fallback es
implemented Successful? y
-E—®—+— yes; return fallback

L(O—O—+— no; return result

Bulkheading & load shedding

Bulkheading & load shedding

—» Execute Hystrix

— command
A
3¢ no, failed or not
implemented
-E—®—+— vyes; return fallback

Execute fallback

Fallback

Successful?

Semaphore
| Thread pool
rejected?

no = Call resource

yes,
reject

Execution
yes failed?
NO
— YesS Timeout?

L(O—O—+— no; return result

Cascading latency example

——Jl Root service

| |
Service C
Service A
ﬁ
Service D
‘I
] .
Service E
o |
Service B
E Service F

Cascade to direct dependencies

| |
Service C
F ‘ 55'7 mcrase n ézz‘mc)/
Service A
-ﬁ
Service D m
‘I |
——ll Root service
] .
Service E
o |
Service B
E Service F

Cascade to indirect dependencies

Given high enough RPS over all services

i

——ll Root service

{

Service C m
_.ﬁ Service A
—
Service D '\
Comnection thread peks
m/%y 4?9/(/
Service E / m
Service B

Service F

W

Full cascade

Service A

=
.

{

Given high enough RPS over all services

BAOM

u

——ll Root service

{

Service B

- |
Service C
Service D
L]
Service E
-
E Service F

Bulkheading with threads or semaphores

User Request Thread ———» E E
HystrixCommand Thread —» -4 4

(1 (i

& b7

= =

Thread-pool
Rejection
Semaphore
Rejection
10 Threads / \ 5 Threads Semaphore (10 count)
Dependency A Dependency |
Thread Thread
Thread l ;
Timeouts
Dependency A Dependency | Dependency X
Client Client Client [
Network ; l ;
Read/Connect
Timeouts
Dependency A Dependency | Dependency X
Server Server Server

Threads

Advantages:
e Calling thread may "walk away" if execution of the command times out.

e Hystrix can try to interrupt the Hystrix thread.

Disadvantages:

e Threads add a little bit of computational overhead and memory usage
We never had any issues with it

e Thread pools are harder to tune because they can be used by multiple commands.

Semaphores

Advantages:

e Very low overhead

e Easier to tune because semaphores are not shared between commands

Disadvantages:
e Only limits the number of concurrent call, so it doesn't fully isolate.

e Calling thread can not "walk away" if command execution times out.

e Hystrix can't interrupt the thread.

When to use thread or semaphore?

The default and the recommended setting is thread isolation.

Generally you should use semaphore isolation only:
e when the thread overhead is too high for your use-case.
e when you are using a client with request based timeouts, which you know to be reliable.

e when you are using an asynchronous, non-block client with the HystrixObservableCommand.

Insight into your downstream resources

SLI....lingOffersByGloballd

40,229 0.0 %
0 O
0|0

Host: 125.9/s
Cluster: 4,030.0/s

Circuit Closed

Hosts 32 90th 3ms
Median 1ms 99th 4ms
Mean Tms 99.5th 4ms

‘ report metrics

i
! D
0
. Semaphore :
—#| Execute Hystrix / Thread pool no —» Call resource =l
<+ command rejected? :
A :
1
yes, :
reject :
1
Execution 1
yes failed? E
i
i
i
NO i
Execute fallback - :
i
i
i
i
i
no, failed or not Fallback : 0
y I ? - E ..
x implemented Successful? yes Timeout:
-E—®—+— yes; return fallback

L(O—O—+— no; return result

Dashboard for real-time metrics

Hystrix Stream: WSP
Filters:
Circuit ggn: Error then Volume |Alphabetical | Volume | Error | Mean | Median | 901 99 | Success | Short-Circuited | Bad Request | Timeout | Rejected | Failure | Error %
5
SSN.GetRelatedSearchTerms o PSA.GetProductCollections o PCN....orMessageForCustomer o GCD....ertificateToCustomer @ ACE.GetBrandResult o
1,092 0.6 % 40 1.0 % 10 3.1 % 1 3.1 % 222 0.3 %
0 0|0 0 0 0 0 0
W 0|0 M 0|1 0|0 0|2 M 0|1
Host: 3.4/s Host: 0.1/ Host: 0.0/s Host: 0.0/s Host: 0.7/s
Cluster: 110.1/s Cluster: 4.1/8 Cluster: 1.1/8 Cluster: 0.3/8 Cluster: 22.2/8
Circuit Closed Circuit Closed Circuit Closed Circuit Closed Circuit Closed
Hosts 32 90th Ims Hosts 32 90th 3ms Hosts 32 90th 18ms Hosts 32 90th 2ms Hosts 32 90th 1ms
Median 2ms 99th 43ms Median 2ms 99th 6ms Median Bms 99th 19ms Median 2ms 99th 2ms Median ims 99th 9ms
Mean dms 99.5th 43ms Mean 2ms 99.5th 6ms Mean 10ms 99.5th 19ms Mean 2ms 99.5th 2ms Mean 1ims 99.5th I9ms
PCN.GetTreatmentlds o PCN.GetTilesContentV2 o SLI....lingOffersByGloballd o SLI....llingOfferByGloballd @ END.Query @
27 1.0 % 72 0.6 % 37,029 0.0 % 18,672 0.0 % 13,114 0.0 %
0 0|0 0 0| 0 0 0
W 0|0 0|0 0|0 00 m 0|0
Host: 0.1/s Host: 0.2/8 Host: 117.2/s Host: 58.0/s Host: 40.3/s
Cluster: 2.8/8 Cluster: 7.5/8 Cluster: 3,748.8/s Cluster: 1,856.3/s cluster: 1,288.0/s
Circuit Closed Circuit Closed Circuit Closed Circuit Closed Circuit Closed
Hosts 32 90th 42ms Hosts 32 90th 110ms Hosts 32 90th Ims Hosts 32 90th 2ms Hosts 32 90th 2ms
Median 10ms 99th 51ms Median 10ms 99th 204ms Median ims 99th 4ms Median ims 99th 3ms Median ims 99th 31ms
Mean 19ms 99.5th 51ms Mean 42ms 99.5th 204ms Mean 1ms 99.5th dms Mean ims 99.5th 3ms Mean 2ms 99.5th J1ms
PCS.FindPartyDetailByld < PCS.FindProductByld < RPG.GetObjectinstruments @ SLT.GetOutputProductList @ PCS.FindProductsByld @
10,270 0.0 % 9,537 0.0 % 8,084 0.0 % 7,731 0.0 % 5,147 0.0 %
0 0 0|0 0 0 0 0
0|0 0 O 0| 0 0 0 0|0
Host: 32.4/s Host: 29.3/s Host: 25.0/s Host: 24.5/s Host: 16.2/s
Cluster: 1,036.4/s Cluster: 938.4/s Cluster: 801.2/8 Cluster: 782.4/8 Cluster: 917.2/8
Circuit Closed Circuit Closed Circuit Closed Circuit Closed Circuit Closed
Hosts 32 90th 2ms Hosts 32 90th 4ms Hosts 32 90th ims Hosts 32 90th 4ms Hosts 32 90th 30ms
Median ims 99th 3ms Median 3ms 99th 6ms Median ims 99th 1ims Median 3ms 99th 14ms Median 9ms 99th T4dms
Mean ims 99.5th 3ms Mean 2ms 99.5th 6ms Mean Oms 99.5th 11ms Mean dms 99.5th 14ms Mean 12ms 99.5th 74ms

Circuit breaker
state

Error percentage

)
0.004% OK

0
1/14

1/15

Long time metrics

GETTILESCONTENTV2 - COMMAND METRICS

Successfull command executions

1/16
== successes Total: 19.9197 Mil

1/17 1/18 1/19 1/20

0

1/14 1/15 1/16 117

External request execution latency

500 ms
400 ms
300 ms
200 ms

100 ms

N |

117 1/18 119

0O ms

1/14 1/15 1/16

Rolling threads executed

bt A4 by it ¥

T i)
f 1T ."-I" i | |||J|JJHJJJ|”""1\.'J,U—.-" "L Wy .'| 4 ‘J‘h‘.'.l !fl'llll" hll'u |..I-I-\| ‘:'

k .,-'-._.,,‘L’."
0 .
114

1/15 1/16 117 1/18 1/19

max
164
186
135
143

psi
psi2
psi3
psi4

sall | ity

1/20

L |
|
LR

1/20

avg current

70
68
71
67

L..._.L._...L._

500 ms

99.5 percentile

99 percentile 400 ms
90 percentile 300 ms
== 75 percentile

200 ms

100 ms

N

Failed command executions

total
14K

failure 1.0275 Mil
short-circuited 2.3555 Mil
threadpool rejected 0]
bad requests 0]

timeout

semaphore rejected 0]

1/18 1/19 1/20

Command execution latency

99.5 percentile
99 percentile
90 percentile

== 75 percentile

UL

0O ms

1/14 1/15 1/16 117

DEFAULT - THREAD POOL
Max active threads at same time
7.5

5.0

| \ \
I‘I ‘II {1 s 00 L L |||‘|-IHH||I il | ||-‘ i -||||‘| LHH II‘II -

LIRS 0 Illlllll\hl DA 1 0 IIJIIIIIIIIIIIIIIIIIIII\I\II\I||II||I|I|IIIIIIIIIJIIIIWIIIIIIIIJIIIIIIIIIIIIIIIII||IIII|II|I|II I
1/14 1/15 1/16 117 1/18 1/19 1/20

[2.5

i i

max
4.00

4.00
3.00
4.00

avg current
1.85 1.00

1.85 2.00
1.86 2.00
1.82 1.00

79
77
77
78

psii
psi2
psi3
psi4

1/18 1/19 1/20

Rolling rejected commands

1/15 1/16 117 1/18 1/19 1/20

max avg current
0 0 0

0 0] 0
0 0] 0
0 0 0

Fail fast with the circuit breaker

é report metrics

Circuit breaker -

Calculate resource health

—» Execute Hystrix Circuit

no

yes,
reject

Execute fallback

Semaphore
/ Thread pool
rejected?

no —p Call resource

Execution

Fallback

Successful?

— com rAnand b;:ae':]??r
yes,
short-circuit
3¢ no, failed or not
implemented
-E—®—+— vyes; return fallback

yes failed?
no
— YesS Timeout?

L(O—O—+— no; return result

Setup monitoring and alerting based on Hystrix metrics

L

Using Hystrix, or any other circuit breaker solution, without
monitoring and alerting is like being blind.

4

All the circuits could be open and you wouldn't know...

Alerting: critical and non-critical commands

Applications at bol.com make distinction in command criticality:

e Critical
Commands for services which can’t have a sensible fallback
and an outage will have a big impact.

e Non-Critical
Commands for services which have sensible fallbacks
or failures don't have a big impact when an outage occurs.

If the error count is too high or the circuit breaker opens of a critical command then the responsible team
and/or operations engineers get notified immediately.

For non-critical commands only a warning is issued on the monitoring screens.

Configure the (HTTP) client

Don’t forget the following settings on your (HTTP) client:
e Client timeout should be tuned according to the command timeout.

e Connection pools should be sized with regards to the Hystrix max. concurrent request settings.

Normal request / response with thread pool isolation

Application Hystrix Command Resource client
Application thread Application thread Hystrix thread

D7 exeCUte() _’J—I_ ru ﬂ() —

Jmm————

}_____________

e e
e B

Too long client timeout with thread pool isolation

With thread pools, long client timeout settings causes unnecessary load shedding.

Application Hystrix Command Resource client
Application thread Application thread Hystrix thread

Ui execute() —qu_ rund

fmm -

]-------------------

rrsnnnnans timeout sssssssss x interru Pl ssusnunns » | Interru pt igmored

client
timeout

Too long client timeout with semaphore isolation

With semaphores, long client timeout settings causes unnecessary load shedding and additional latency.

Application Hystrix Command Resource client
Application thread Application thread Application thread

Ui execute()

|

run()

nystrix
timeout

X

client
timeout

4
s
(D
O
=
-
A
=
(D
O
C

Solution: Make client timeout before Hystrix

Application Hystrix Command Resource client
Application thread Application thread Hystrix thread

Ui execute() —bJﬁ FUR()

fm————-

b

client
timeout

1

* Hystrix counts any exception from the client as an exception, even if it is a timeout.

et e

30

Solution: Make client timeout just after Hystrix

Application
Application thread

e

1

* Interrupts are often not reliable. Clients don't always respond to it, depending on timing...

|

|

|

|
- .

Hystrix Command
Application thread

timeoyt sssssssss x interrupt’lr x

Resource client
Hystrix thread

[UN() s—

jm————-

client timeout /
interrupted

Trick: Map common timeouts to Hystrix timeouts

Create execution hook plugin:

public class MapTimeoutExecutionHook extends HystrixCommandExecutionHook {

@Override
public <T> Exception onExecutionError (HystrixInvokable<T> command, Exception exception) {

1f(isTimeoutException(exception)) {

HystrixTimeoutException timeoutException = new HystrixTimeoutException();
timeoutException.initCause(exception);

return timeoutException;

}

return e;

}

Register plugin:

HystrixPlugins.getInstance().registerCommandExecutionHook (new MapTimeoutExecutionHook());

Trick: Set the command timeout as the request timeout

Extract timeout from command and use as read timeout:

public class GetReviewsCommand extends HystrixCommand<List<Review>> {

// fields and constructor

@Override
protected List<Review> run() {
int readTimeout = getProperties().executionTimeoutInMilliseconds().get();

return client.getReviews (productId, readTimeout);

}

Only when not using retries!

Don’t have too many retries!

Too many retries also causes unnecessary load shedding, additional latency and can flood the resource.

4 e)

Application Hystrix Command Client Resource Resource
Instance 1 Instance 2

}

}______

— CXECULE() 4 run() -

m— [QUEST =—p

}______________

T

i timeout

i

i

| timeout H

i ——— [QUEST =]

i

i

n timeout a0
€ O TUISIS A () S I R——

timeout T

}

— [CQUEST =

timeout

5
3
Ei

—mmmmee

Advice: have at most one retry

After one retry it should be good or just let it fail.

@Iication

S

— CXECULE() 4

p-mmm -

rnns exception

____________________________[

Hystrix Command

‘IIII

timeout

timeout

-
Client

e [[| | []() —

m— (2 UEST

A

Resource
Instance 1

}______

—p

_______________________________{

\

/

Resource
Instance 2

}______________

_______________________[

\

Define a naming scheme

Commands, thread pools and command groups have key names.
A key:
e should be descriptive, indicating which resource and what part of it is being used.

e needs to be unique within an application.

A uniform naming style:
e Prevents naming conflicts.
e Promotes descriptive names.

e Makes it easier to use for monitoring and metrics purposes.

Naming scheme example:

Pattern applied at bol.com:

{service-id}.{command-name}[{service-version}]

Examples:
e PCS.GetProductByld

e PCS.GetProductByldV2

Tuning: the numbers tell the tale

Tune on production and based on real traffic patterns.

Base the timeout settings on the behaviour of the resource,
not on the time you are willing to wait for the resource®.

Only re-tune if the behavior or performance characteristics
of the command have changed, based on alerts and monitoring.

Don't forget to tune the timeouts of the client!

*If the healthy latency is too long then add an extra timeout layer around the command.

Tuning: command timeout and concurrency formulas

Base on the metrics of a healthy resource under peak pressure:

Command settings

e Timeout: 99,5th percentile command latency
e Max Concurrent executions: {request/second} x {99,5th % latency in seconds} + {breathing room}

e Thread pool size:* {combined request/second} x {max 99,5th % latency in seconds} + {breathing room}

Settings for a new resource:
e Timeout: Use performance test data or set to 1 second or higher.
e Max Concurrent executions / thread pool size:* Use performance test data or set to 10 or more.

Be generous and tune again as soon as you have the production metrics!

* Commands with big differences in latency characteristics should have separate thread pools

Tuning: (HTTP) client tuning formulas timeout formulas

Connect timeout
e \Within same network: 100ms or lower

e To other network: measure

Read/socket timeout
e When not using retries: equal to command timeout.

e When using retries: {99.5th resource latency} - {median resource latency}

Operations

il

i)

- T
/ @

Expect Jitter and Failure

Hystrix measures and reports metrics with very small granularity which reveals “jitter” — seen as bursts of
timeouts, thread-pool rejections, slow downs, ...

Some of the causes:
e Garbage collection
e New machines starting up and “warming up”
e Different payload sizes for different request arguments
e Bursty call patterns

e Cache misses

Example of jitters

PCS - Requests vs Errors

max avg
Success 263.8K 140.5 K

== Timeout 267

Exceptions thrown 0

Failure 52

Short circuited 0

== Semaphore rejected 10

== Thread pool rejected 0

4]
©
-
o]
o
L
w
o
m
~
(7]
—
o]
, -
|-
Q

SPU03S QE / SISSIINS

0 ||||I.‘|| TR |||.|.|..||I|II‘II In‘L il .||||I..i‘ .I..‘|||.|.|I||‘.| L ‘||I‘| ..I||‘|||.I|.||‘I||||I|II|||.‘II. al |‘I||H||H kb adllhissndl ||I||.|..|‘|| ||.L.I‘I|.|||||I.||||I|I.||.I|‘| .|i.|i|.l||||‘|‘||..||l b ”L‘ e |I|||| .I.||||||||||||.|.I||I|I bl |.||||.|||||||H‘II|..I|||.|||I|I..‘||.|||||||u|||||h o B, . |||||||.||h|.||‘||||.|||| ||I|I|‘|.|I‘|‘I.||||‘ Il ‘M |||l|‘ I‘.l"‘hn hh|.||hl||.l||| i
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

When Hystrix is reporting failures

If you notice timeouts, load shedding or circuit breakers being open, don’t overreact by immediately
reconfiguring the commands.

Do not give a command more resources (increasing thread pool, timeouts, queues) to try to give it some
temporary breathing room. It may make things worse!

Find out what is causing Hystrix to shed load, short-circuit, timeout and reject before doing any
configuration changes.

It may be that Hystrix is just doing it's job...

Experiences @ bol.com

e Resilience prevented many small outages and
a couple of big ones.

e We sleep a lot better now!
e Hystrix is a great libray:
m |t does it's job well.
= |t integrates with our tools.

m |t is easy to learn and implement.

Experiences @ bol.com

e Tuning is often overlooked and not trivial!
® [ncorrect timeouts.
m |ncorrect thread-pool sizes.
= Client not correctly configured.

e Implementing Hystrix is more an organisational challenge
then a technical challenge.

Wrap up
- e Failures are not the exception, they are normal.
We need to be resilient.
e Techniques to increase resilience:
= Implement fallback’'s where possible.
= Manage timeouts carefully.

m Use bulk heading and load shedding to prevent
resource hijacking.

= Add circuit breakers to skip futile calls to
unhealthy systems.

e Adding resilience doesn't need to be hard with
great libraries like Hystrix.

Thank you for your attention

Any questions?

SLIDES
Slides: Nttp://bit.ly/goto-resilience
Hystrix project: nttps://github.com/Netflix/Hystrix
ool.com tech blog: nttps://techlab.bol.com/
Jobs @ bol.com: nttps://banen.bol.com/

http://bit.ly/goto-resilience
https://github.com/Netflix/Hystrix
https://techlab.bol.com/
https://banen.bol.com/

