
Resilience Engineering in a

microservice landscape
Maurice Zeijen

Let me introduce myself

Maurice Zeijen

Java developer for over 10 years

Lead Software Architect @ bol.com

This is bol.com

bol.com is one of the most popular webshops in The Netherlands and Belgium sinds 1999.

Visits per month: > 28 million

Products: > 14 million

Active Customers: > 7 million

Partners: > 16.500

Private sellers: > 180.000

Employees: > 1.200

IT engineers: > 350

What am I going to talk about?

What is resilience?

Why do we need resilience?

Implementing resilience with Hystrix

Resilience techniques

Tips & tricks

Operations

Experiences @ bol.com

Wrapup

What is resilience?

— Merriam Webster

“

”

The ability of a substance or object to spring back into shape.

The capacity to recover quickly from difficulties.

Resilience in IT systems

The ability of a system to handle unexpected situations:

without the user noticing it

with a graceful degradation of service

automatically recovering, as if it never happened

Resilience in a (micro)service landscape

Why do we need resilience?

Failures in today’s complex, distributed, interconnected systems are not the exception.

They are the normal case.

Complexity at bol.com

+50 User facing applications

+120 Backend services

60 IT Teams

All interconnected in some way or another…

What could possible go wrong?

Services fail and go down.

New versions of services can have bugs
or are not backwards compatible.

Network connections degrade or fail.

Client libraries have bugs and misbehave.

Services become slow.

Latency: Destroyer of distributed systems

Latency can cause cascading failures across multiple systems,
even if they are only loosely connected.

We need to be resilient!

Hurricane Ike, september 2008, Texas
Only one house survived because it was build for hurricane conditions.

Implementing resilience with Hystrix

Hystrix:

is a open-source Java latency and fault tolerance library from Netflix.

is designed to isolate points of access to remote systems and libraries.

provides the means to handle failures gracefully.

measures everything you want to know of it’s execution.

is relatively easy to use.

There are similar libraries for other non-jvm languages.

Where to apply the resilience techniques with Hystrix

Circuit
breaker
open?

Semaphore
/ Thread pool
rejected?

Call resource

Execution
failed?

Timeout?

Calculate resource health

Execute Hystrix
command

Execute fallback

Fallback
Successful?

no

yes,
reject

yes,
short­circuit

no

no, failed or not
implemented

yes

yes

yes; return fallbackF F

no; return result

no

report metrics

Hystrix �ow gather metrics

Call resourceExecute Hystrix
command

return result

Hystrix command

Implementing a Hystrix command

public class GetReviewsCommand extends HystrixCommand<List<Review>> {

 private final ReviewClient reviewClient;
 private final String productId;

 public GetReviewsCommand(ReviewClient reviewClient, String productId) {
 super(
 Setter.withGroupKey(HystrixCommandGroupKey.Factory.asKey("review"))
 .andCommandKey(HystrixCommandKey.Factory.asKey("GetReviews"))
);
 this.reviewClient = reviewClient;
 this.productId = productId;
 }

 @Override
 protected List<Review> run() throws Exception {
 return reviewClient.getReviews(productId);
 }
}

You need to implement a command for every resource endpoint.

Non-blocking clients are also supported by implementing the HystrixObservableCommand.

Execution a command

// Synchronous, blocking
List<Review> reviews = new GetReviewsCommand(client, productId).execute();

// Asynchronous, blocking, with a Future
Future<List<Review>> reviews = new GetReviewsCommand(client, productId).queue();
/// Do some other things
List<Review> reviews = reviewsFuture.get();

// Asynchronous, blocking, with Observables
Observable<List<Review>> reviews = new GetReviewsCommand(client, productId).observe();
reviewsObservable.subscribe(reviews -> {
 // do something with the reviews
});

// Asynchronous, non-blocking stream with Observables
Observable<Review> reviews = new GetReviewStreamCommand(client, productId).observe();
reviewsObservable.subscribe(review -> {
 // do something with the each review
});

- Create a new command for every call. - CompletableFuture is not supported.

- Only RxJava 1 is supported. - Backpressure is not supported.

Resilience techniques

Fallback

Timeouts

Bulkheading & load shedding

Health insights

Circuit breaker

Graceful degradation with the fallback

Goal of the fallback

Giving your user the best possible experience when your system is having issues.

Hide the feature → Fail silent

Use a default → Static fallback

Use an alternative → Stubbed fallback or fallback via network

If a fallback makes no sense → Fail fast

Call resource

Execution
failed?

Execute Hystrix
command

Execute fallback

Fallback
Successful?

no, failed or not
implemented

yes

yes; return fallbackF F

no; return result

Failures & fallback

Stubbed fallback example

The product list title is created by a service based on the product category and selected filters.

Stubbed fallback example

Service fails: fallback the title to just the product category name.

When a fallback probably makes no sense

Some cases when you probably don’t want a fallback:

For write operations
If a write fails, you probably want the failure to propagate back to the caller.

For batch or offline operations
If your Hystrix command is starting a batch job or some other offline computation, it’s usually more
appropriate to propagate the error back to the caller.

Within backend services
Often it is not possible choose an appropriate fallback within a backend service. Those commands should
fail fast, return a decent error message and let the user-facing application provide the fallback, or they
apply a fallback and add meta data to the response that the fallback was applied.

Implementing the fallback within the HystrixCommand

public class GetReviewsCommand extends HystrixCommand<List<Review>> {

 // Fields and constructor

 @Override
 protected List<Review> run() throws Exception {
 return reviewClient.getReviews(productId);
 }

 @Override
 protected List<Review> getFallback() {
 return Collections.emptyList();
 }

}

Other forms of a fallback or when not fallback

If no fallback is implemented or the fallback throws an exception then the Command itself will throw a
HystrixRuntimeException.

try {
 Observable<Review> reviews = new GetReviewsCommand(client, productId).execute();
} catch (HystrixRuntimeException e) {
 Exception actualException = e.getCause();

 // Do something usefull with the real exception.
}

Protecting against latency

Call resource

Execution
failed?

Timeout?

Execute Hystrix
command

Execute fallback

Fallback
Successful?

no

no, failed or not
implemented

yes

yes

yes; return fallbackF F

no; return result

Latency

Bulkheading & load shedding

Semaphore
/ Thread pool
rejected?

Call resource

Execution
failed?

Timeout?

Execute Hystrix
command

Execute fallback

Fallback
Successful?

no

yes,
reject

no

no, failed or not
implemented

yes

yes

yes; return fallbackF F

no; return result

Bulkheading & load shedding

Cascading latency example

Cascade to direct dependencies

Cascade to indirect dependencies

Full cascade

Bulkheading with threads or semaphores

Threads

Advantages:

Calling thread may "walk away" if execution of the command times out.

Hystrix can try to interrupt the Hystrix thread.

Disadvantages:

Threads add a little bit of computational overhead and memory usage
We never had any issues with it

Thread pools are harder to tune because they can be used by multiple commands.

Semaphores

Advantages:

Very low overhead

Easier to tune because semaphores are not shared between commands

Disadvantages:

Only limits the number of concurrent call, so it doesn’t fully isolate.

Calling thread can not "walk away" if command execution times out.

Hystrix can’t interrupt the thread.

When to use thread or semaphore?

The default and the recommended setting is thread isolation.

Generally you should use semaphore isolation only:

when the thread overhead is too high for your use-case.

when you are using a client with request based timeouts, which you know to be reliable.

when you are using an asynchronous, non-block client with the HystrixObservableCommand.

Insight into your downstream resources

Semaphore
/ Thread pool
rejected?

Call resource

Execution
failed?

Timeout?

Calculate resource health

Execute Hystrix
command

Execute fallback

Fallback
Successful?

no

yes,
reject

no

no, failed or not
implemented

yes

yes

yes; return fallbackF F

no; return result

report metrics

Metrics gather metrics

Dashboard for real-time metrics

Long time metrics

Fail fast with the circuit breaker

Circuit
breaker
open?

Semaphore
/ Thread pool
rejected?

Call resource

Execution
failed?

Timeout?

Calculate resource health

Execute Hystrix
command

Execute fallback

Fallback
Successful?

no

yes,
reject

yes,
short­circuit

no

no, failed or not
implemented

yes

yes

yes; return fallbackF F

no; return result

no

report metrics

Circuit breaker gather metrics

Tips & Tricks

Setup monitoring and alerting based on Hystrix metrics

Using Hystrix, or any other circuit breaker solution, without
monitoring and alerting is like being blind.

All the circuits could be open and you wouldn’t know…

Alerting: critical and non-critical commands

Applications at bol.com make distinction in command criticality:

Critical
Commands for services which can’t have a sensible fallback
and an outage will have a big impact.

Non-Critical
Commands for services which have sensible fallbacks
or failures don’t have a big impact when an outage occurs.

If the error count is too high or the circuit breaker opens of a critical command then the responsible team
and/or operations engineers get notified immediately.

For non-critical commands only a warning is issued on the monitoring screens.

Con�gure the (HTTP) client

Don’t forget the following settings on your (HTTP) client:

Client timeout should be tuned according to the command timeout.

Connection pools should be sized with regards to the Hystrix max. concurrent request settings.

Normal request / response with thread pool isolation

Too long client timeout with thread pool isolation

With thread pools, long client timeout settings causes unnecessary load shedding.

Too long client timeout with semaphore isolation

With semaphores, long client timeout settings causes unnecessary load shedding and additional latency.

Solution: Make client timeout before Hystrix

Solution: Make client timeout just after Hystrix

Trick: Map common timeouts to Hystrix timeouts

Create execution hook plugin:

public class MapTimeoutExecutionHook extends HystrixCommandExecutionHook {

 @Override
 public <T> Exception onExecutionError(HystrixInvokable<T> command, Exception exception) {

 if(isTimeoutException(exception)) {

 HystrixTimeoutException timeoutException = new HystrixTimeoutException();
 timeoutException.initCause(exception);

 return timeoutException;
 }

 return e;
 }

}

Register plugin:

HystrixPlugins.getInstance().registerCommandExecutionHook(new MapTimeoutExecutionHook());

Trick: Set the command timeout as the request timeout

Extract timeout from command and use as read timeout:

public class GetReviewsCommand extends HystrixCommand<List<Review>> {

 // fields and constructor

 @Override
 protected List<Review> run() {

 int readTimeout = getProperties().executionTimeoutInMilliseconds().get();

 return client.getReviews(productId, readTimeout);
 }
}

Only when not using retries!

Don’t have too many retries!

Too many retries also causes unnecessary load shedding, additional latency and can flood the resource.

Advice: have at most one retry

After one retry it should be good or just let it fail.

De�ne a naming scheme

Commands, thread pools and command groups have key names.

A key:

should be descriptive, indicating which resource and what part of it is being used.

needs to be unique within an application.

A uniform naming style:

Prevents naming conflicts.

Promotes descriptive names.

Makes it easier to use for monitoring and metrics purposes.

Naming scheme example:

Pattern applied at bol.com:

{service-id}.{command-name}[{service-version}]

Examples:

PCS.GetProductById

PCS.GetProductByIdV2

Tuning: the numbers tell the tale

Tune on production and based on real traffic patterns.

Base the timeout settings on the behaviour of the resource,
not on the time you are willing to wait for the resource*.

Only re-tune if the behavior or performance characteristics
of the command have changed, based on alerts and monitoring.

Don’t forget to tune the timeouts of the client!

* If the healthy latency is too long then add an extra timeout layer around the command.

Tuning: command timeout and concurrency formulas

Base on the metrics of a healthy resource under peak pressure:

Command settings

Timeout: 99,5th percentile command latency

Max Concurrent executions: {request/second} × {99,5th % latency in seconds} + {breathing room}

Thread pool size:* {combined request/second} × {max 99,5th % latency in seconds} + {breathing room}

Settings for a new resource:

Timeout: Use performance test data or set to 1 second or higher.

Max Concurrent executions / thread pool size:* Use performance test data or set to 10 or more.

Be generous and tune again as soon as you have the production metrics!

* Commands with big differences in latency characteristics should have separate thread pools

Tuning: (HTTP) client tuning formulas timeout formulas

Connect timeout

Within same network: 100ms or lower

To other network: measure

Read/socket timeout

When not using retries: equal to command timeout.

When using retries: {99.5th resource latency} - {median resource latency}

Operations

Expect Jitter and Failure

Hystrix measures and reports metrics with very small granularity which reveals “jitter” — seen as bursts of
timeouts, thread-pool rejections, slow downs, …

Some of the causes:

Garbage collection

New machines starting up and “warming up”

Different payload sizes for different request arguments

Bursty call patterns

Cache misses

Example of jitters

When Hystrix is reporting failures

If you notice timeouts, load shedding or circuit breakers being open, don’t overreact by immediately
reconfiguring the commands.

Do not give a command more resources (increasing thread pool, timeouts, queues) to try to give it some
temporary breathing room. It may make things worse!

Find out what is causing Hystrix to shed load, short-circuit, timeout and reject before doing any
configuration changes.

It may be that Hystrix is just doing it’s job…

Experiences @ bol.com

Resilience prevented many small outages and
a couple of big ones.

We sleep a lot better now!

Hystrix is a great libray:

It does it’s job well.

It integrates with our tools.

It is easy to learn and implement.

Experiences @ bol.com

Tuning is often overlooked and not trivial!

Incorrect timeouts.

Incorrect thread-pool sizes.

Client not correctly configured.

Implementing Hystrix is more an organisational challenge
then a technical challenge.

Wrap up

Failures are not the exception, they are normal.
We need to be resilient.

Techniques to increase resilience:

Implement fallback’s where possible.

Manage timeouts carefully.

Use bulk heading and load shedding to prevent
resource hijacking.

Add circuit breakers to skip futile calls to
unhealthy systems.

Adding resilience doesn’t need to be hard with
great libraries like Hystrix.

Thank you for your attention

Any questions?

Slides:

Hystrix project:

bol.com tech blog:

Jobs @ bol.com:

http://bit.ly/goto-resilience

https://github.com/Netflix/Hystrix

https://techlab.bol.com/

https://banen.bol.com/

http://bit.ly/goto-resilience
https://github.com/Netflix/Hystrix
https://techlab.bol.com/
https://banen.bol.com/

