
Rethinking Services
with Stateful Streams

Ben Stopford
@benstopford

What are
microservic

es really
about?

GUI

UI
Service

Orders
Service

Returns
Service

Fulfilment
Service

Payment
Service

Stock
Service

Splitting the Monolith?
Single Process

/Code base
/Deployment

Many Processes
/Code bases
/Deployments

Orders
Service

Autonomy?

Orders
Service

Stock
Service

Email
Service

Fulfillment
Service

Independentl
y Deployable

Independently
Deployable

Independently
Deployable

Independently
Deployable

Independence is
where services
get their value

Allows
Scaling

Scaling in terms of people

What happens when we grow?

Companies are
inevitably a collection

of applications They must work together to some
degree

Interconnection is an
afterthought

FTP / Enterprise Messaging etc

Microservices / SOA are
patterns for multi-team

architectures

Internal World

External world

External world

External World

External world

Service
Bounda

ry

Services Force Us To Consider The
External World

Internal World

External world

External world

External World

External world

Service
Bounda

ry

External World is something we should
Design For

Independence
comes at a

cost
$$$

Orders
Object

Statement
Object getOpenOrders(),

Less Surface Area = Less Coupling

Encapsulate
State

Encapsulate
Functionality

Consider Two Objects in one
address space

Encapsulation => Loose Coupling

Change 1 Change 2
Redeploy

Singly-deployable
 apps are easy

Orders Service Statement Service getOpenOrders(),

Independently Deployable Independently Deployable

Synchronized
changes are painful

Services work best
where

requirements are
isolated in a single
bounded context

Single Sign On Business Service authorise(),

It’s unlikely that a
Business Service
would need the

internal SSO state /
function to change

Single Sign On

SSO has a
tightly

bounded
context

But business
services are

different

Catalog Authorisation

Most business services
share the same core

datasets.

Most
services live

in here

The futures of
business

services are
far more
tightly

intertwined.

We need encapsulation to
hide internal state. Be

loosely coupled.

But we need the freedom to
slice & dice shared data
like any other dataset

But data
systems have
little to do with
encapsulation

Service Database

Data
on

inside

Data
on

outside

Data
on

inside

Data
on

outside

Interface
hides
data

Interface
amplifies

data

Databases amplify the data
they hold

The data dichotomy
Data systems are about exposing data.

Services are about hiding it.

Microservices
shouldn’t share a

database

Good Advice!

So what do we
do instead?

Service
Interface

Database

Data
on

inside

Data
on

outside

We wrap a database in a
service interface

One of two
things

happens next

Service
Interface

Database

Either (1) we constantly add to the
interface,

as datasets grow

getOpenOrders(
 fulfilled=false,
 deliveryLocation=CA,
 orderValue=100,
 operator=GreatherThan)

getOrder(Id)

getOrder(UserId)

getAllOpenOrders()

getAllOrdersUnfulfilled(Id)

getAllOrders()

(1) Services can end up
looking like kookie home-

grown databases

...and DATA
amplifies this

“Data-Service”
problem

(2) Give up and move whole
datasets en masse

getAllOrders()

Data Copied
Internally a)  Too slow to change

b)  To perform joins

This leads to a
different
problem

Data diverges over time
Orders
Service

Stock
Service

Email
Service

Fulfill-
ment

Service

The more
mutable

copies, the
more data will
diverge over

time

Nice neat
services

Service
contract too

limiting

Can we
change both

services
together,
easily?

NO

Broaden Contract

Eek $$$

NO

YES

Is it a
shared

Database
?

Frack it!
Just give

me ALL the
data

Data
diverges.
(many different
versions of the

same facts)
Lets

encapsulate
Lets

centralise to
one copy

YES

Start
here

Cycle of inadequacy:

These forces compete
in the systems we

build

Divergence

Accessibility

Coupling

Is there a
better way?

Step 1:
Build on a backbone of

events.
Layer in requests where

necessary.

Request Driven -> highest
Coupling

Commands
& Queries

Orders
Service

Bus

Event Broadcast => lowest
coupling

Stream of
events

Do
whatever
 I like J

Highest
Independen

ce

Event Driven Services
Chain

(Event Collaboration)

Order
Requeste

d

Order
Validate

d

Payment
Processed

Shipment
Dispatched

Shipment
Delivered

Shipment
Prepared

Order
Complete

d

Order
Confirmed

Order Service

Shipment Service Payment
Service

Async
messag
e flow

Layer queries/commands where
needed

Order
Requeste

d

Order
Validate

d

Payment
Processed

Shipment
Dispatched

Shipment
Delivered

Shipment
Prepared

Order
Complete

d

Order
Confirmed

Basket
Service

Order Service

Shipment Service

Payment
Service

Step 2:
Make data-on-the-

outside
a 1st class citizen

Data on the Inside

Data on the Outside

Data on the Outside

Data on the Outside

Data on the Outside

Service
Boundary

Stateful Streams

Stateful
Streams

Services
embed a

view

Services
embed a

view

Services embed a view

Services embed a view

Kafka helps with this

Kafka: a Streaming
Platform

The Log Connectors Connectors

Producer Consumer

Streaming Engine

The Log
Messages added

Kafka
(a distributed log)

Messages Consumed

Transactions

Service Backbone
Scalable, Fault Tolerant, Concurrent, Strongly Ordered,
Transactional*, Retentive

A place to keep
the data-on-the-

outside

Orders Customers

Payments Stock

Events are the
shared dataset

Cached Views Suffice

Leave data in Kafka
-> Services only need caches

Now add
Stream

Processing

What is Stream Processing?

A machine for combining
and processing streams of

events

Stateful stream
processing

•  Data constantly updated

•  Some data accumulated in each
service

•  Accumulated via a window

•  Accumulated via a key

A Query Engine inside your
service

Join Filter Aggr-
egate

View

Window

A database embedded in your
service. One designed for

handing streams.

Kafka

Your
Service

Customers Orders

Payments Stock

Avg(o.time – p.time)
From orders, payment,
user
Group by user.region
over 1 day window
emitting every second

View as a Stream or a Table (in
& out)

Streams
Stream Processing Engine

Table

Derived
“Table”

Window / Tables Cached on disk in
your Service

stream

Compacted
stream

Join

Stream Data

Stream-Tabular
Data

Domain Logic

Tables
/

Views

Kafka
Event Driven Service

Overflow to RocksDB

Orders Customers

Payments Stock

Join:
- Payments
(stream),
- Orders (stream),
- Stock (table)

K
S

TR
E

A
M

S

Example: Trigger an email when a
payment is confirmed. Include Order

& Stock description
K

S
TR

E
A

M
S

Orders Customers

Payments Stock

JDBC Connector

If a streaming engine doesn’t cut it,
branch out to database but keep it

ephemeral

So we have
shared

storage in the
Log, and a

query engine
layered on top

Data Storage + Query Engine ==
Database?

Data lives
here KAFK

A

Query lives
here

Customer
Alteration

Service

MI Fraud Fulfillment

Data
lives
here KAFKA

UI View

Queries
processed

in each
service

1 x Data Storage + n x Query == Shared
Database?

A Database, Inside Out

Historical
Streams

Services
embed a

view

Services
embed a

view

Services embed a view

Services embed a view

Microservices
shouldn’t
share a

database

But this isn’t a
normal

database

Orders
Service

Stock
Service

Kafka

Fulfilment
Service

UI
Service

Fraud
Service

Event Broadcast
has the lowest coupling

Stream of
events

Do
whatever
 I like J

Orders
Service

Stock
Service

Kafka

Fulfilment
Service

UI
Service

Fraud
Service

Centralizing immutable
data doesn’t affect

coupling!
Stream of

events

Do
whatever
 I like J

To share a
database,

turn it inside out!

Orders Customers

Payments Stock

AKA: a machine for creating
views

Shared
database

Service
Interfaces

Stream
Data

Platform

J !
Event

Broadca
st

Ease
of change

Data
Accessibility

Data
Erosion

L !L !

L !

J !

J !

K !

J !

J !

J !

J !

L !L !

So…

Good architectures have
little to do with this:

It’s about how systems
evolves over time

Request driven isn’t enough

•  High coupling
•  Hard to

handle async
flows

•  Hard to move
and join
datasets.

Embrace data that lives and
flows between services

Give services
independence

Orders Customers

Payments Stock

Freedom to tap into and manage shared data

But build on single stream data
platform everyone can access and

share

Orders Customers

Payments Stock

Mechanism for
evolving an
architecture

efficiently over
time

WIRED Principals •  Wimpy: Start simple, lightweight and fault

tolerant.

•  Immutable: Build a retentive, shared

narrative.

•  Reactive: Leverage Asynchronicity. Focus

on the now.

•  Evolutionary: Use only the data you need

today.

•  Decentralized: Receiver driven.

Coordination avoiding. No God services

References
•  Stopford: The Data Dichotomy:

https://www.confluent.io/blog/data-dichotomy-rethinking-the-way-we-treat-
data-and-services/

•  Kleppmann: Turning the Database Inside Out:
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-
samza/

•  Helland: Immutability Changes Everything:
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper16.pdf

•  Helland: Data on the Inside vs Data on the Outside:
http://cidrdb.org/cidr2005/papers/P12.pdf

•  Kreps: The Log:
https://engineering.linkedin.com/distributed-systems/log-what-every-software-
engineer-should-know-about-real-time-datas-unifying

•  Narkhede: Event Sourcing, CQRS & Stream Processing:
https://www.confluent.io/blog/event-sourcing-cqrs-stream-processing-apache-
kafka-whats-connection/

Twitter:
@benstopford

Blog series at
 http://confluent.io/blog

More coming very shortly

