Rethinking Services
with Stateful Streams

Ben Stopford
@benstopford

--}:onfluent

This IsMe.
— ENGINECR
KT CONTLUEN T
— Ex THOUEHT LIORCS
+UK FiINANce

Splitting the Monolitl

Single Process

Many Processes

/Code base /Code bases
/Deployment /Deployments
GUI
a)
T lll / Orders \ Returns
Service|* > Service | > Sepies

Payment
Service

“confluent

< >

Fulfilment
Service

<

%

>

AN

A\ 4

Stock
Service

uent

Autonomy?

Orders
Service

Independently
Deployable

Fulfillment

Service
Independentl
y Deployable

confluent

Stock
Service

Independently
Deployable

Emaill

ervic

Independently
Deployable

Independence Is
where services
get their value

“confluent

:=confluent

Scaling in terms of people

oa |

[l

@\

L]

@

2,
@@_5_5_ -~
®@l

&=

What happens when we grow?

confluent

wuUullhihydiliivo Aalv

Inevitably a collection
The@‘ﬁtapﬂllli%ih@ﬂ Some

AI‘\N "2l o W N

confluent

Interconnection Is an
afterthought

FTP / Enterprise Messaging etc

o

- <>

confluent

Microservices / SOA are
patterns for multi-team

' | Pf\h :'I'f\f\'l'l 1V

Sconriuent

Services Force Us To Consider The
External World

External world
Service

Bounda External world
ry

Internal World

External World

External world

confluent

External World is something we should

Design For
External world
Service
Bounda External world
ry

Internal World

External World

External world

confluent

Independence
comes at a
cost

Consider Two Objects in one
address space

C())Lc!er? Statement
eC '
] getOpenOrders(), ObjeCt
Encapsula

State
Encapsula ess Surface Area = Less Coupling
Functionali

Encapsulation => Loose Coupling

confluent

Change 2
\§ Redeploy
—

50 C

>ingly-deployable l '[

Change 1

apps are easy

confluent

Independently Deployable Independently Deployable

Orders ServiggtopenOrder@tatement Service

—>

S

Synchronized
changes are painf

confluent

Services work best
where
requirements are
Isolated In a single
bounded context

confluent

Single Sign On

Single Sign On,orise(), Business Service

It's unlikely that a

Business Service

would need the —
internal SSO state /

function to change

“confluent

SSO has a
tightly
bounded
context

:=confluent

But business
services are

different

IVIVUOUL VUOIIITCOO OCI VIUCTO

share the same core

' datasets.

\Y

6\0(0@ O/‘O'

00 4 $ Most

services live
here

Authorisation

Catalog Q

confluent

| 11 TUluires Ol
business
sServices are
far more
tightly

“confluent o pm b i paden & 70 1A A A

2o

We need encapsulation to
hide Internal state. Be
loosely coupled.

But we need the freedom to
slice & dice shared data
like any other dataset

Nfluent

But data
systems have
little to do with
encapsulation

:=confluent

Databases amplity the data
they hold._

Data ~ Data
on ~on
o&fé?Qe " outside
Interface Interface
hides = (Camplifies
data data
" Data
/on
“inside

Service Database

The data dichotomy

ita systems are about exposing de
Services are about hiding it.

—conflu

Microservices
shouldn’t share a
database

Good Advice!

So what do we
do instead?

:=confluent

We wrap a database in a
service Iinterface

_ Data
Service @ on

Interface ... outside
Q =7, Data
& on
- inside
Database

confluent

One of two
things
nappens next

:=confluent

Either (1) we constantly add to the
interface,
as datasets grow

getOpenOrders(
fulfilled=false,
Service deliveryLocation=CA,
- ' orderValue=100,
Interface operator=GreatherThan)
@
&
Database

confluent

(1) Services can end up
looking like kookie home-

grown databases
getOrder(ld)

getOrder(Userld)
getAllOpenOrders()
getAllOrdersUnfulfilled(ld)

getAllOrders()

..and DATA
amplifies this
‘Data-Service”

:=confluent

(2) Give up and move whole
datasets en masse

_ 2 —
|— getAllOrders() sis I y
[— .J —_!

Data Copied
a) Too slow to change Internally
b) To perform joins

confluent

This leads to a
different
problem

:=confluent

Data diverges over time

Orders /\vv//)

_ /\vv/»/) Stock
Service |

— =, Y L) Service

Fulfill-
ment
Service

1 Email
2 Service

confluent

1 11e [T10IC
mutable
copies, the
more data will
diverge over

=confluent .I-img

/cle of inadequacy:

Service
contract too
limiting

Nice neat
services

Lets
encapsulate

- Can we
change both
services

togethelyES
easily?

NO

Broaden Contract

NO

Eek $$$

Is it a
shared

Database
f?

YES

Lets
centralise to
one copy

Frack it!
Just give
me ALL the
data

Data
diverges.

(many different
versions of the
same facts)

111COCT 1IUILCO LUITIPTCLC
In the systems we

Accessibility

Ve

Coupling Divergence

confluent

IS there a
pbetter way?

Step 1:

Build on a backbone of

events.

Layer In requests where
necessary.

“confluent

Request Driven -> highest
Coupling

Commands FL_E_,
& Querie
\ Q
» O
®) O

O O

“confluent

Event Broadcast => lowest

coupling
Orders] Highest
Service | Independen

Stream of
ce
events K

— B

)

DO
. whatever
=conflugiike ©

L.VCIIL LJIIVCTII] OCI VILCO

Chain
(Event Collaboration)

Async Payment
y Jymen Shipment Service
messag

e ﬂ OW o Order Shipment
Val| date Confirmed Dispatched Order
oy Complete
Requeste
d
Payment Shipment
Processed Prepared Shlpment
Dellvered

[Order Service

confluent

Layer queries/commands where
needed

Shipment Service

Order
Confirmed

Shipment
Dispatched

Requeste
d

Payment Shipment

Processed Prepared Sl

Delivered

Payment
Service

Order Service
--:é:orw fluent

Step 2:

Make data-on-the-
outside
a 1st class citizen

“confluent

Data on the Outside

Service

Boundar
{ Data on the Outside

Data on the Inside

Data on the Outside

Data on the Outside

Stateful Streams

Services embed a view

S

Services [Stateful |- Services

embed a St embed a
view « reams | view

b b % Kprra

Services embed a view

“confluent

38 K arra

Kafka helps with this

AalKka. a otreaming

Platform

Produce Consumer

A

&

6\
Connectors The Log Connectors

conflu

—

e
b b % Kprra

Streaming Engine

O @ O Messages added

S e E Kafka
(a distributed log)

i{lessages Consumed

“confluent

—conflue, ..

Transactions

Service Backbone

Scalable, Fault Tolerant, Concurrent, Strongly Ordered,
Transactional®, Retentive

Services Naturally Load This provides Fault Tolerance Transactions
Balance OO0y i e '
1] : \\ A N T T '
= BN 7 = O 7 o =

)) %
)

| S | . SEEBBE
= (28) & L BB/
o Yy : = :

Va4

Roll back in “fime”

Compacted Log

(tables & streams)
J—
< Version 3 Version a \/D

\Y Ver V
HIEEERINNEEENINEENENINEENENINENEEN)
T Version | Version 3
P\ewlhd 7 Rep‘ag Version a

“confluent

A place to keep
the data-on-the-
outside

:=confluent

Leave data in Kafka
-> Services only need caches

Events are the

shared dataset

\ < - |1 | |

I\ /7 0\
\ \J \l .
e Orders Customers
N PR,

< =) -7
~ A - (r\-Stock

Payments

vauraivaill
- 00 . ©)-©

Cached Views Suffice

confluent

Now add
Stream
Processing

“confluent

What is Stream Processing?

4] /)
__,..-"" . J "" /"' ;_' ‘-,_.‘ / ;_-__:f'-
"_-__..‘ .'./,» -T——_. [-;-;—-;'____
l’ l" _-"'_-_“- » N _-—-';.—'-
| | o
\ \ # >
e

ol -"l;-".'__/_', gl {l_ﬁ_ﬂ-ﬂ'?
\, N 2

-/ — - : =
O 5~_
0 R . g
Oy .
0 -
0 -
Won>

: -
L

A machine for combining
and processing streams of
--:é:or\ﬂuemt events

O

Stateful stream

processing
. Data constantly updated

. Some data accumulated in each
service

. Accumulated via a window

- Accumulated via a key

“confluent

A Query Engine inside your
service

confluent

Join

Aggr-
egate

A UdldlDdse clTibpedded i your
service. One designed for
handing streams.

- :\\ A S N N N
= Customers Orders
Kafka N T B
.
o Payments “$tock .
X 7)
! |/\ 1/ \ I / \<|>/\ <|)
Your
Service

—_—

confluent

View as a Stream or a Table (in
& out)

Stream Processing Engine

Streams Avg(o.time — p.time)

NP MMM > |From orders, payment,|=>
HEREEENEENC> |user

Table Group by user.region

over 1 day window
pR— > e g every seco
erived N

C
“Table” %

confluent

Window / Tables Cached on disk In

your Service
Kafka

Event Driven Service
Stream Data stream

Domain Logic | . \\ |_|_|

Stream-Tabular
Data

Tables

Views f Compacted
stream

Overflow to RocksDB

“confluent

Example: Trigger an emalil when a
payment is confirmed. Include Order
& Stock description

Join:

- Payments
(stream),
- Orders (stream),
\ - Stock (table)
I\ /) NN ’N
N b % NOK
p— Orders Customers T =0 l_l
N Y
< 7
- R R
. Payments ek == ‘? <@7
o R
/N1/\L/ N

/N
M@ OO0

“confluent

If a streaming engine doesn't cut It,
branch out to database but keep It
ephemeral

JDBC Connector

AR lJ,I IJI

Orders Customers
Y
RGN (N

Payments e
—

VANIVAYWV \f/\l7_
M™H®™ OO

|\/|//@

“confluent

? \J

shared
storage In the
L.0Qg, and a
guery engine
~davered on tobp

VV s 1I1CAV WV

Data Storage + Query Engine ==
Database?

Query lives
here

Data lives
here

“confluent

1 x Data Storage + n x Query == Shared
Database?

% Customer
-) Alteration
j, Service
Data
| lives
Queries KAF KA here
processed
INn each
service —
@ \J

Cionfluent M Fraud Fulfilment Ul View

A Database, Inside Out

Services
embed a
view

“confluent

S

“~ Historical
1 Streams

® &

Services embed a view

&

—

Services embed a view

Services
embed a
view

38 Karka

Microservices
shouldn't
share a
database

But thisisn't a
normal

database

Event Broadcast
has the lowest coupling

1

Orders
Service

Stream of
events
K Fraud

Stock <|\ .| Kafka / SIVIEE

Service

DO
whatever Fulfiiment UI

Zconflugiike © Service Service

bentrauzmg 1HTHTIULlaplic
data doesn’t affect

caeypiing’

Service

Stream of
events
K Fraud
Stock <|\ .| Kafka / SIVIEe

Service

DO
whatever Fulfiiment UI

Zconflugiike © Service Service

To share a
database,
turn It iInside out!

—:c mmmmmmmm

AKA: a machine for creating

VIEWS
O\ AR |1,
A\ Ll
— Orders Custome
AN 4
~ 5___/.7 ﬁ r\-IStOCH
| Payments

“confluent

Ease Data Data
of change Accessibility Erosion

Shared Q8
database 8 @ @ @ @
. oN®
Service
Interfaces © @ @
Event -~ 9
Broadca o @ @ ®
t
Strgam N O
Data . B @ @ @

I?Iatform

“confluent

Good architectures have
little to do with this:

DATARASE
CeRvek

£
ProTECTRD A I
T NETWORK
window S
Aﬁmﬁ'“u mggmmou
w + PATA RASE LS

confluent

It's about how systems
evolves over time

Request driven isn't enough

confluent

* High coupling
* Hard to

handle async
flows

« Hard to move

and join
datasets.

Embrace data that lives and
flows between services

Data on the Outside

SerVice

Boundary
Data on the Outside

Data on the Inside

Data on the Outside

Data on the Outside

confluent

Glve services

iIndependence
®\\ E}\ /D\ IZI]-IJEI]
< Orders C\u//stoTers =
: r\Payn:Znts C "~ fStock £
evaivanynyl
OO® 60

edom to tap into and manage shared ¢

“confluent

DUl DUIld Oon Singie stream aala
platform everyone can access and
share

AR | | |, |

—

Orders Customers
4

R G

Iil

Q\\D 0 2
~

Stock

confluent

Mechanism for
evolving an
architecture

efficiently over

time

{@omf !!!!!

Wj ' wple=Nghtweight and fault
WREDPrindipals
Immutable: Build a retentive, shared
narrative.

Reactive: Leverage Asynchronicity. Focus
on the now.

Evolutionary: Use only the data you need
today.

_Decentralized: Recelver driven.

P P

References

Stopford: The Data Dic_;hotom/y: _ o
https://www.confluent.io/blog/data-dichotomy-rethinking-the-way-we-treat-
data-and-services/

Kleppmann: Turning the Database Inside Out; o _
https://vaw.conﬂuent.|o/blog/turnln_q-the-database-lnS|de-out-W|th-apache-
samza

Helland: Immutability Changes Ever thing:
http://cidrdb.org/cidr2015/Papers/CIDR15 Paper16.pdf

Helland: Data on the Inside vs Data on the Outside:
http://cidrdb.org/cidr2005/papers/P12.pdf

Kreps: The Log: . o
https://engineering.linkedin.com/distributed-systems/log-what-every-software-
engineer-should-know-about-real-time-datas-unifying

Narkhede: Event Sourcing, CQRS & Stream Processing: _
https://www.confluent.io/blog/event-sourcing-cqrs-stream-processing-apache-
katka-whats-connection/

“confluent

Twitter:

--CON f luent @benstopford

Blog series at
http://confluent.io/blog

More coming very shortly

