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Independence Is
where services
get their value
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Scaling in terms of people
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What happens when we grow?
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Interconnection Is an
afterthought

FTP / Enterprise Messaging etc
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Microservices / SOA are
patterns for multi-team
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Services Force Us To Consider The
External World
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External World is something we should
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Independence
comes at a
cost




Consider Two Objects in one
address space
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Independently Deployable Independently Deployable
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Synchronized
changes are painf
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Services work best
where
requirements are
Isolated In a single
bounded context
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Single Sign On

Single Sign On,orise(), Business Service

It's unlikely that a

Business Service

would need the —
internal SSO state /

function to change
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SSO has a
tightly
bounded
context
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But business
services are

different
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We need encapsulation to
hide Internal state. Be
loosely coupled.

But we need the freedom to
slice & dice shared data
like any other dataset

Nfluent



But data
systems have
little to do with
encapsulation
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Databases amplity the data
they hold._

Data ~ Data
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The data dichotomy

ita systems are about exposing de
Services are about hiding it.
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Microservices
shouldn’t share a
database

Good Advice!



So what do we
do instead?
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We wrap a database in a
service Iinterface

_ Data
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One of two
things
nappens next
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Either (1) we constantly add to the
interface,
as datasets grow

getOpenOrders(
fulfilled=false,
Service deliveryLocation=CA,
- ' orderValue=100,
Interface operator=GreatherThan)
@
&
Database
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(1) Services can end up
looking like kookie home-

grown databases
getOrder(ld)

getOrder(Userld)
getAllOpenOrders()
getAllOrdersUnfulfilled(ld)

getAllOrders()



..and DATA
amplifies this
‘Data-Service”
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(2) Give up and move whole
datasets en masse
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|— getAllOrders() sis I y
[ — .J —_!

Data Copied
a) Too slow to change  Internally
b) To perform joins
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This leads to a
different
problem
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Data diverges over time
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1 11e [T10IC
mutable
copies, the
more data will
diverge over
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/cle of inadequacy:

Service
contract too
limiting

Nice neat
services

Lets
encapsulate

- Can we
change both
services

togethelyES
easily?

NO

Broaden Contract

NO

Eek $$$

Is it a
shared

Database
f?

YES

Lets
centralise to
one copy

Frack it!
Just give
me ALL the
data

Data
diverges.

(many different
versions of the
same facts)
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In the systems we

Accessibility
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confluent



IS there a
pbetter way?



Step 1:

Build on a backbone of

events.

Layer In requests where
necessary.
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Request Driven -> highest
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Event Broadcast => lowest

coupling
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(Event Collaboration)
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Layer queries/commands where
needed

Shipment Service

Order
Confirmed

Shipment
Dispatched

Requeste
d

Payment Shipment

Processed Prepared Sl

Delivered

Payment
Service
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Step 2:

Make data-on-the-
outside
a 1st class citizen
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Data on the Outside

Service

Boundar
{ Data on the Outside

Data on the Inside

Data on the Outside
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Stateful Streams

Services embed a view

S

Services [ Stateful |- Services

embed a St embed a
view « reams | view
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Services embed a view
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Kafka helps with this



AalKka. a otreaming

Platform
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O @ O Messages added

S e E Kafka
(a distributed log)

i{lessages Consumed
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Service Backbone

Scalable, Fault Tolerant, Concurrent, Strongly Ordered,
Transactional®, Retentive

Services Naturally Load This provides Fault Tolerance Transactions
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Roll back in “fime”

Compacted Log

(tables & streams)
J—
< Version 3 Version a \/D

\Y Ver V
HIEEERINNEEENINEENENINEENENINENEEN)
T Version | Version 3
P\ewlhd 7 Rep‘ag Version a

“confluent



A place to keep
the data-on-the-
outside
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Leave data in Kafka
-> Services only need caches

Events are the

shared dataset
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Now add
Stream
Processing
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What is Stream Processing?
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Stateful stream

processing
. Data constantly updated

. Some data accumulated in each
service

. Accumulated via a window

- Accumulated via a key
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A Query Engine inside your
service
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A UdldlDdse clTibpedded i your
service. One designed for
handing streams.
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View as a Stream or a Table (in
& out)

Stream Processing Engine

Streams Avg(o.time — p.time)

NP MMM > |From orders, payment,|=>
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Window / Tables Cached on disk In

your Service
Kafka

Event Driven Service
Stream Data stream

Domain Logic | . \\ |_|_|

Stream-Tabular
Data

Tables

Views f Compacted
stream

Overflow to RocksDB
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Example: Trigger an emalil when a
payment is confirmed. Include Order
& Stock description

Join:

- Payments
(stream),
- Orders (stream),
\ - Stock (table)
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If a streaming engine doesn't cut It,
branch out to database but keep It
ephemeral

JDBC Connector
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Data Storage + Query Engine ==
Database?

Query lives
here

Data lives
here
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1 x Data Storage + n x Query == Shared
Database?

% Customer
- ) Alteration
j, Service
Data
| lives
Queries KAF KA here
processed
INn each
service —
@ \J
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A Database, Inside Out

Services
embed a
view
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Microservices
shouldn't
share a
database



But thisisn't a
normal

database



Event Broadcast
has the lowest coupling
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To share a
database,
turn It iInside out!
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AKA: a machine for creating
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Good architectures have
little to do with this:
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It's about how systems
evolves over time




Request driven isn't enough
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* High coupling
* Hard to

handle async
flows

« Hard to move

and join
datasets.



Embrace data that lives and
flows between services

Data on the Outside

SerVice

Boundary
Data on the Outside

Data on the Inside

Data on the Outside

Data on the Outside
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Glve services

iIndependence
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Mechanism for
evolving an
architecture

efficiently over

time
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Wj ' wple=Nghtweight and fault
WREDPrindipals
Immutable: Build a retentive, shared
narrative.

Reactive: Leverage Asynchronicity. Focus
on the now.

Evolutionary: Use only the data you need
today.

_Decentralized: Recelver driven.

P P



References

Stopford: The Data Dic_;hotom/y: _ o
https://www.confluent.io/blog/data-dichotomy-rethinking-the-way-we-treat-
data-and-services/

Kleppmann: Turning the Database Inside Out; o _
https://vaw.conﬂuent.|o/blog/turnln_q-the-database-lnS|de-out-W|th-apache-
samza

Helland: Immutability Changes Ever thing:
http://cidrdb.org/cidr2015/Papers/CIDR15 Paper16.pdf

Helland: Data on the Inside vs Data on the Outside:
http://cidrdb.org/cidr2005/papers/P12.pdf

Kreps: The Log: . o
https://engineering.linkedin.com/distributed-systems/log-what-every-software-
engineer-should-know-about-real-time-datas-unifying

Narkhede: Event Sourcing, CQRS & Stream Processing: _
https://www.confluent.io/blog/event-sourcing-cqrs-stream-processing-apache-
katka-whats-connection/

“confluent




Twitter:

--CON f luent @benstopford

Blog series at
http://confluent.io/blog

More coming very shortly




