
JavaScript @ Uber

Dustin Whittle, Developer Advocate

Presenting the work of many people at Uber

73 
Countries

470+
Cities

75% 
of the U.S. population
lives in a county with

access to Uber

1.5M+ 
Active Driver Partners

5+ Million 
Trips per day

2+ Billion 
Trips completed

Evolution of the Uber App

2009 2012 2016

Singapore

Jun ‘10

First ride in San
Francisco

2 Billion rides
worldwide

Jun ‘16

Launched self-driving
car project

Feb ‘15May ‘12

1 Million rides
worldwide

1 Billion rides
worldwide

Sep ‘16

First self-driving
ride

May ‘17

73 countries
launched

TODAY

We hired lots of engineers

They wrote a lot of software

Organized as Programs and Platforms

Program Platform

Mission Business Focused Technology focused

Consumers
Non-technical + Internal/
External

Technical + Internal

Products Feature-based products Technology consumed by programs

Team Cross-functional Specialized

Direction Product drivers Engineering Drivers

Building a platform that interacts with the
real world adds another level of complexity

Uber's ability to scale has come from
high-velocity, hard engineering, along
with autonomous teams and domains

Languages in use at Uber

We are a polyglot engineering organization, and we speak many languages.

In order of preference - many services are moving to Go (or Java)

Why JavaScript?

• A single stack for frontend and backend

• Simple interface with thorough documentation

• Lends itself to fast prototyping and quick iteration

• Asynchronous, nimble, flexible

• Avoid concurrency challenges

• Increasingly mature module ecosystem

• Today we only use Node.js for web applications

How Uber uses JavaScript

Marketplace Platform (core services)

Web Platform (web presence)

Visualizing Data (everywhere)

Developer Platform (external API)

Uber invests in developer productivity

Developer Experience

Web Platform

Marketplace Platform

Mobile Platform
Developer
Platform

Infrastructure

Let Builders Build
12000+ full-time employees globally

• Send proposal and request for comments to entire eng org

• Abstract, Architecture, UX, Ops, Security, Timeline

• Start with scaffolding that is purpose built for our stack

• Skip the boilerplate while following best practices

• Deploy with standardized global infrastructure

• Automate everything in a consistent way

• Playbooks

• Operationalize teams at scale

Uber Service Foundation

• Instrumentation (Jaegar + OpenTracing)

• Source Control (Phabricator)

• Continuous Integration (Jenkins)

• Infrastructure + Deployments + ChatOps
(u*)

• Monitoring + Alerting

• Metrics + Analytics

• Security + Compliance

• Experiments

• Asset Pipeline + CDN

• RPC (HTTP, TChannel, etc)

• Translations + Internationalization

• Data (Schemaless, Cassandra, SQL)

• Network

• Compute

• Storage

• Logging

• Performance + Failure Testing

How Uber uses JavaScript

Marketplace Platform (core services)

Web Platform (web presence)

Visualizing Data (everywhere)

Developer Platform (external API)

Real-time API is the frontline web service of Uber serving
99.99% of all the mobile traffic with >1000 HTTP endpoints.

● Acts as a router to 3400+ microservices

● A single place for monitoring and documentation

Marketplace Gateway
Real-time API is the only interface

Pick up 
Passenger
1

Pick up 
Passenger
2

1st Drop-
off

2nd Drop-
off

Logistics Challenges

...

• How to optimize for overall marketplace efficiency?
• How to dynamically price trips and balance efficiency?
• How to maximize pick-up efficiency (pick up zones, pick up

suggestions)?
• How to minimize wait times for drivers and riders?
• How to deal with different street configurations?
• Combine different logistics products (Pool, Eats, Rush)

UberPool is a traveling salesman problem on steroids

Uber Engineering Stack Evolution
2009-2010 - Outsourced PHP + MySQL

Jan 2011 - "Dispatch" - Node.JS/MongoDB

Jan 2011 - "API" - Python/SQLAlchemy/MySQL

Feb 2012 - Dispatch swaps MongoDB for Redis

May 2012 - Dispatch adds on fallback

Jan 2013 - First non-API Python services

Feb 2013 - API switched to Postgres

Mar 2014 - New Python services use MySQL

Mar 2014 - Schemaless begins, must finish before Postgres collapse

Sep 2014 - First Schemaless - trips out of Postgres

Aug 2015 - Dispatch X.0 / Ringpop / Riak

Jan 2016 - Go, Java, More Abstractions

May 2017 - UberFx for Go, Cloud

Monolith ≠ bad

• Well, not bad at first, but can turn into a ball of mud quickly

• Optimizes development velocity of early stage projects

• Consolidates operational overhead in one place

• Monolith isn’t as bad when there is a single team that owns it

A microservice is a service that
is focused on only one thing.

One Thing != One API

• Clear ownership boundaries

• Most of the time

• Product-specific velocity

• Move the business faster

• Able to solve scaling issues

• Systems as well as company

• Training, documentation, tooling

• Language/platform independence

• Best tool for the job

• Reliability of the system

• Independent

• Scalable

• Testable

Pros
What’s good

• Increased complexity

• Naming + Discovery

• Eventual consistency

• Performance Impact

• Distributed tracing

• Testing

• Operational overhead

• Monitoring

• Continuous Integration

• Deployment

• Documentation

• Instrumentation

• Security

• Repeated code/effort

Cons
What’s not so good

https://www.martinfowler.com/bliki/MicroservicePremium.html

https://www.martinfowler.com/bliki/MicroservicePremium.html

Ringpop

Ringpop is a library that
brings cooperation and
coordination to distributed
applications. It maintains a
consistent hash ring on top of
a membership protocol and
provides request forwarding
as a routing convenience.

TChannel

TChannel is a networking
framing protocol used for
general RPC, supporting out-
of-order responses at
extremely high performance
where intermediaries can
make a forwarding decision
quickly. Client libraries
available in Go, Java, Node
and Python.

Jaeger

Jaeger, inspired by Dapper
and OpenZipkin, is a
distributed tracing system. It
can be used for monitoring
microservice-based
architectures. Client libraries
available in Go, Java, Node
and Python using the
OpenTracing standard.

Lessons learned scaling Node.js

• Latency is too high for ultra performant backend systems (p99 for max latency)

• Early on it made it quick to iterate, but as the size of the team scaled the

developer velocity started to slow down

•Microservices enforce a tight interface so having static typing enables large

teams to catch issues earlier. It has an impact with 100+ devs.

•Quick to learn, but easy to write poor quality code

•Enables you to move fast, but allows for sloppy code

•Great ecosystem of small libraries, but many were immature compared to Java/Go

•Don't be afraid of writing c++

Growing pains learned the hard way

Lessons learned scaling Uber

• HTTP and JSON was designed for browsers;

using RPC is better for computer-to-computer

requests

• After a certain age, microservices should

become immutable

• Having multiple languages allows for team

preferences, but segregates developers based

on language and prevents easy re-use of code

across services

• Company > Team > Self

• Monorepos allow for changes to be made across

multiple services atomically, but prevent future

open-sourcing and subset checkouts

• Performance problems are difficult to debug

cross-language without standardised service

dashboards and observability tools

• Logging should never slow production down; in a

failure storm, the logging system should drop

rather than delay

• Everything is a tradeoff: Be intentional

Growing pains learned the hard way

How Uber uses JavaScript

Marketplace Platform (core services)

Web Platform (web presence)

Visualizing Data (everywhere)

Developer Platform (external API)

The Web Platform
Serving 250+ web properties

 Without a consistent foundation, all of these
applications could have been built off of entirely

different tools and architectures, creating a higher
likelihood of security vulnerabilities, duplicated
effort across teams, technical debt, minimal UI

consistency, etc.

Uber Web Platform built from Open Source

• Nginx + HAProxy: Web frontends + load balancers

• NPM: NPM registry

• Babel: For ES6 and ES7 transpilation

• Express: Fast, unopinionated, minimalist web framework for Node.js

• React: UI rendering library

• Redux: Predictable state application framework

• Styletron: Universal, high-performance JavaScript styles

• ESLint: Maintain a consistent code style across many teams

• Browserify: For bundling client-side code

• Tape + Enzyme + Sinon: Testing frameworks

• Unitest + Istanbul: Seamless Node.js and Browser testing with coverage

• Gulp + Dev Tools: Standardized build tooling

Uber Web Platform added special sauce

• Internal npm registry with caching

• Yeoman like scaffolding for bootstrap new apps with best practices

• Customized middlewares for our Express based app framework

• Authentication, Security (XSS, CSRF, CSP), Metrics, Logging, I18n, Errors,

Instrumentation, Analytics

• Bootstrap like UI component library build on top of React.js

• RPC library for intelligently using http/tchannel

• Shared Build + Test Gulp tasks with hot reloading, ES6/JSX, asset versioning

and deployment pipelines, testing + linting

• Universal rendering for server/client

Frontend vs Backend

• We separate our frontend services (those that serve web pages)

from our backend services (those that get data from some

database)

• Services can take advantage of universal rendering + tooling

• You can utilize languages better suited for your backend

services (Java, Go)

• You can deploy and scale your services separately

• You can reuse the backend service API for other clients

RPC Client

React components for flexibility
Uber’s take on bootstrap

• Beautiful sites with flexible components you don’t have to maintain yourself

• Standard UI components

• Optimized for performance

• Encapsulated style

• Consistent look and feel throughout all components that fit brand

• Analytics and instrumentation baked-in

• Seamless upgrades to new versions

CSS in JS with Styletron

import Styletron from 'styletron'; 
import { injectStyle } from 'styletron-utils'; 
 
// Create a Styletron instance  
const styletron = new Styletron();  
 
const className = injectStyle(styletron, {  
 color: 'red', 
 display: 'inline-block',  
 fontSize: '1.6em' 
}); 
// Css is injected into the page 
// and a class name is returned

How Uber uses JavaScript

Marketplace Platform (core services)

Web Platform (web presence)

Visualizing Data (everywhere)

Developer Platform (external API)

Visualization Frameworks

● react-vis: Charts and Networks using D3 + React

● react-map-gl: A React interface to MapboxGL-js

● deck.gl: Layered WebGL approach system for

visualization

● luma.gl: A JavaScript WebGL Framework for Data

Visualization

New York

New York

Visualizations with deck.gl

• ES6, WebGL 2.0, component-based platform

• Interoperable with other popular libraries like stack.gl

• Shader library with a 64-bit floating point emulation package

• Advanced debugging, tracing, error checking for WebGL

luma.gl
A JavaScript WebGL Framework for Data Visualization

San Francisco

How Uber uses JavaScript

Marketplace Platform (core services)

Web Platform (web presence)

Visualizing Data (everywhere)

Developer Platform (external API)

Uber Developer Platform
Enabling the world to build moving experiences with Uber

An open platform for Building
Moving Experiences

What future will you build?
https://developers.uber.com

Credits
All of the content from this presentation comes from other talks by engineers far smarter than myself

● Lessons learned from scaling to 2000 engineers and
1000+ services - Matt Ranney

● Uber Architecture: Moving Bits and Atoms at Scale -
Andrii Iasynetskyi

● Thanks to the many amazing people of the Marketplace
Platform, Web Platform, Developer Platform, and
Visualization Teams at Uber!

● Come join us and work with these amazing people.
Hiring globally (San Francisco, Amsterdam, Sofia, ...)

https://www.youtube.com/watch?v=kb-m2fasdDY
https://www.youtube.com/watch?v=kb-m2fasdDY
https://twitter.com/mranney
https://dou.ua/calendar/14720/
https://twitter.com/yasik

Questions?

Thanks!

